cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072478 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives numerator of S_n.

Original entry on oeis.org

0, 2, 2, 4, 2, 8, 1, 16, 1, 32, 1, 64, 1, 128, 1, 256, 1, 512, 1, 1024, 1, 2048, 1, 4096, 1, 8192, 1, 16384, 1, 32768, 1, 65536, 1, 131072, 1, 262144, 1, 524288, 1, 1048576, 1, 2097152, 1, 4194304, 1, 8388608, 1, 16777216, 1, 33554432, 1, 67108864, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 02 2002

Keywords

Comments

Answer to question of how to extend the sequence 0, 2, 2 Pi r, 4 Pi r^2, 2 Pi^2 r^3, ...
Volume of n-dimensional sphere of radius r is V_n*r^n - see A072345/A072346.
a(2*n-1) = 2^n and for n>2 a(2*n)=1.
Denominator of the rational coefficient of integral_{x>0} exp(-x^2)*x^n. - Jean-François Alcover, Apr 23 2013
From Ilya Gutkovskiy, Aug 02 2016: (Start)
Numerator of n/Gamma(n/2+1).
More generally, the ordinary generating function for the surface area of the n-dimensional sphere of radius r is 2*x*(1 + exp(Pi*r^2*x^2)*Pi*r*x + exp(Pi*r^2*x^2)*Pi*r*erf(sqrt(Pi)*r*x)*x) = 2*x + 2*Pi*r*x^2 + 4*Pi*r^2*x^3 + 2*Pi^2*r^3*x^4 + (8*Pi^2*r^4/3)*x^5 + Pi^3*r^5*x^6 + ... (End)

Examples

			Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
		

References

  • N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.

Crossrefs

Cf. A072479. A072478(n)/A072479(n) = n*A072345(n)/A072346(n).

Programs

  • Mathematica
    f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 52}]
    CoefficientList[Series[x (2 + 2 x - 2 x^2 - 4 x^3 - x^5 + 2 x^7)/(1 - 3 x^2 + 2 x^4), {x, 0, 52}], x] (* Michael De Vlieger, Aug 01 2016 *)
    LinearRecurrence[{0,3,0,-2},{0,2,2,4,2,8,1,16,1},60] (* Harvey P. Dale, May 30 2018 *)
  • PARI
    concat(0, Vec(x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7)/(1-3*x^2+2*x^4) + O(x^100))) \\ Colin Barker, Aug 01 2016

Formula

From Colin Barker, Sep 04 2012: (Start)
a(n) = 3*a(n-2)-2*a(n-4) for n>4.
G.f.: x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7) / (1-3*x^2+2*x^4).
(End)
From Colin Barker, Aug 01 2016: (Start)
a(n) = (1+(-1)^n-2^((1+n)/2)*(-1+(-1)^n))/2 for n>4.
a(n) = 1 for n>4 and even.
a(n) = 2^((n+1)/2) for n>4 and odd.
(End)

Extensions

More terms from Robert G. Wilson v, Aug 18 2002