A072478 Surface area of n-dimensional sphere of radius r is n*V_n*r^(n-1) = n*Pi^(n/2)*r^(n-1)/(n/2)! = S_n*Pi^floor(n/2)*r^(n-1); sequence gives numerator of S_n.
0, 2, 2, 4, 2, 8, 1, 16, 1, 32, 1, 64, 1, 128, 1, 256, 1, 512, 1, 1024, 1, 2048, 1, 4096, 1, 8192, 1, 16384, 1, 32768, 1, 65536, 1, 131072, 1, 262144, 1, 524288, 1, 1048576, 1, 2097152, 1, 4194304, 1, 8388608, 1, 16777216, 1, 33554432, 1, 67108864, 1
Offset: 0
Examples
Sequence of S_n's begins 0, 2, 2, 4, 2, 8/3, 1, 16/15, 1/3, 32/105, 1/12, 64/945, ...
References
- N. Cakic, D. Letic, B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010) 364292 doi:10.1155/2010/364292
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 10, Eq. 19.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22. - _N. J. A. Sloane_, Sep 04 2012
- Eric Weisstein's World of Mathematics, Ball
- Eric Weisstein's World of Mathematics, Hypersphere
- Eric Weisstein's World of Mathematics, Four-Dimensional Geometry
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).
Programs
-
Mathematica
f[n_] := Pi^(n/2 - Floor[n/2])*n/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 52}] CoefficientList[Series[x (2 + 2 x - 2 x^2 - 4 x^3 - x^5 + 2 x^7)/(1 - 3 x^2 + 2 x^4), {x, 0, 52}], x] (* Michael De Vlieger, Aug 01 2016 *) LinearRecurrence[{0,3,0,-2},{0,2,2,4,2,8,1,16,1},60] (* Harvey P. Dale, May 30 2018 *)
-
PARI
concat(0, Vec(x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7)/(1-3*x^2+2*x^4) + O(x^100))) \\ Colin Barker, Aug 01 2016
Formula
From Colin Barker, Sep 04 2012: (Start)
a(n) = 3*a(n-2)-2*a(n-4) for n>4.
G.f.: x*(2+2*x-2*x^2-4*x^3-x^5+2*x^7) / (1-3*x^2+2*x^4).
(End)
From Colin Barker, Aug 01 2016: (Start)
a(n) = (1+(-1)^n-2^((1+n)/2)*(-1+(-1)^n))/2 for n>4.
a(n) = 1 for n>4 and even.
a(n) = 2^((n+1)/2) for n>4 and odd.
(End)
Extensions
More terms from Robert G. Wilson v, Aug 18 2002
Comments