A072480 Shadow transform of factorials A000142.
0, 1, 0, 0, 0, 0, 3, 0, 4, 3, 5, 0, 8, 0, 7, 10, 10, 0, 12, 0, 15, 14, 11, 0, 20, 15, 13, 18, 21, 0, 25, 0, 24, 22, 17, 28, 30, 0, 19, 26, 35, 0, 35, 0, 33, 39, 23, 0, 42, 35, 40, 34, 39, 0, 45, 44, 49, 38, 29, 0, 55, 0, 31, 56, 56, 52, 55, 0, 51, 46, 63, 0, 66, 0, 37, 65, 57, 66, 65
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- Lorenz Halbeisen and Norbert Hungerbuehler, Number theoretic aspects of a combinatorial function, Notes on Number Theory and Discrete Mathematics 5(4) (1999), 138-150. (ps, pdf); see Definition 7 for the shadow transform.
- OEIS Wiki, Shadow transform.
- N. J. A. Sloane, Transforms.
Programs
-
Maple
a:= n-> add(`if`(modp(j!, n)=0, 1, 0), j=0..n-1): seq(a(n), n=0..120); # Alois P. Heinz, Sep 16 2019
-
Mathematica
s[k_] := k!; f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0]; t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] a[n_] := Count[Flatten[t[n]], 1] Table[a[n], {n, 2, 420}] (* A072480 *) Flatten[Position[%, 0]] (* A006093, primes-1 *) (* Agrees with A072480 for n > 1, from Clark Kimberling, Feb 12 2012 *)
-
PARI
A002034(n) = if(1==n,n,my(s=factor(n)[, 1], k=s[#s], f=Mod(k!, n)); while(f, f*=k++); (k)); \\ From A002034 A072480(n) = if(n<2,n,(n-A002034(n))); \\ Antti Karttunen, Oct 01 2018
Formula
For n > 1, a(n) = n - A002034(n).
Comments