A072493 a(1) = 1 and a(n) = ceiling((Sum_{k=1..n-1} a(k))/3) for n >= 2.
1, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 22, 29, 39, 52, 69, 92, 123, 164, 218, 291, 388, 517, 690, 920, 1226, 1635, 2180, 2907, 3876, 5168, 6890, 9187, 12249, 16332, 21776, 29035, 38713, 51618, 68824, 91765, 122353, 163138, 217517, 290023, 386697
Offset: 1
Keywords
Links
- Michel Marcus, Table of n, a(n) for n = 1..1000
- K. Burde, Das Problem der Abzählreime und Zahlentwicklungen mit gebrochenen Basen [The problem of counting rhymes and number expansions with fractional bases], J. Number Theory 26(2) (1987), 192-209. [The author deals with the representation of n in fractional bases k/(k-1) and its relation to counting-off games (variations of Josephus problem). Here k = 4. See the review in MathSciNet (MR0889384) by R. G. Stoneham.]
- A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33(2) (1991), 235-240.
- Index entries for sequences related to the Josephus Problem
Programs
-
Mathematica
f[s_] := Append[s, Ceiling[Plus @@ s/3]]; Nest[f, {1}, 52] (* Robert G. Wilson v, Jul 07 2006 *)
-
PARI
lista(nn) = {va = vector(nn); va[1] = 1; for (n=2, nn, va[n] = ceil(sum(k=1, n-1, va[k])/3);); va;} \\ Michel Marcus, Apr 16 2015
Formula
a(n) = ceiling(c*(4/3)^n - 1/2) where c = 0.389324199524937508840138455...
From Petros Hadjicostas, Jul 21 2020: (Start)
Conjecture: The constant c above equals (3/16)*K(4), where K(q) = C(q/(q-1)) (q > 1) is described in Odlyzko and Wilf (1991).
For a > 1, the constant C(a) = limit_{n -> infinity} f_n(a)/a^n, where f_{n+1}(a) = ceiling(a*f_n(a)) for n >= 0 and f_0(a) = 1.
Thus, K(4) = limit_{n -> infinity} f_n(4/3)/(4/3)^n = 2.076395730799666... We have K(2) = 1 and K(3) = A083286 = 1.622270502884767315... (End)
Comments