cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072513 Product of all n - d, where d < n and d is a divisor of n.

Original entry on oeis.org

1, 1, 2, 6, 4, 60, 6, 168, 48, 360, 10, 47520, 12, 1092, 1680, 20160, 16, 440640, 18, 820800, 5040, 4620, 22, 734469120, 480, 7800, 11232, 4953312, 28, 3946320000, 30, 9999360, 21120, 17952, 28560, 439723468800, 36, 25308, 35568, 35852544000
Offset: 1

Views

Author

Amarnath Murthy, Jul 28 2002

Keywords

Examples

			a(6) = (6-1)(6-2)(6-3) = 60.
For n = 16 the divisors d < n are 1,2,4 and 8, so a(16) = (16-1)*(16-2)*(16-4)*(16-8) = 15*14*12*8 = 20160.
		

Crossrefs

Cf. A072512, A080497, A080498, A080500 (similar products), A258324 (LCM instead of product).
Cf. A027751.

Programs

  • Haskell
    a072513 n = product $ map (n -) $ a027751_row n
    -- Reinhard Zumkeller, May 27 2015
  • Mathematica
    Table[Times @@ (n - Most[Divisors[n]]), {n, 1, 40}] (* Ivan Neretin, May 26 2015 *)
  • PARI
    for(n=1,40,d=divisors(n); print1(prod(j=1,matsize(d)[2]-1,n-d[j]),","))
    
  • PARI
    a(n)=factorback(apply(d->if(dCharles R Greathouse IV, May 26 2015
    

Formula

a(n) = (n-d_1)(n-d_2)...(n-d_k) where d_k is the largest divisor of n less than n (k = tau(n) - 1).
a(p) = p-1, a(pq) = pq(p-1)(q-1)(pq-1), p and q prime.
If n is not a prime or the square of a prime then n divides a(n).

Extensions

Edited and extended by Klaus Brockhaus, Jul 31 2002