A080499 Duplicate of A072513.
1, 1, 2, 6, 4, 60, 6, 168, 48, 360, 10, 47520, 12, 1092, 1680, 20160, 16, 440640, 18
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(6) = (6-2)(6-3)(6-5) = 12. a(7) = (7-2)(7-3)(7-5) = 40.
a[n_] := Product[n - Prime[k], {k, 1, PrimePi[n - 1]}]; Array[a, 30] (* Amiram Eldar, Dec 01 2018 *)
a(n) = my(mk = primepi(n-1)); prod(k=1, mk, n-prime(k)); \\ Michel Marcus, Dec 01 2018
a(6) = (6-4) = 2. a(10) = (10-4)(10-6)(10-8)(10-9) = 48.
Module[{nn=30,cmps},cmps=Select[Range[nn],CompositeQ];Table[Times@@(n-Select[ cmps,#Harvey P. Dale, Aug 13 2024 *)
a(6) = (6-1)(6-4)= 10.
a(9) = lcm(9-1, 9-3) = lcm(8, 6) = 24.
a258324 n = foldl lcm 1 $ map (n -) $ a027751_row n -- Reinhard Zumkeller, May 27 2015
f:= n -> ilcm(seq(n-d, d = numtheory:-divisors(n) minus {n})): map(f,[$ 1 .. 100]); # Robert Israel, May 26 2015
Table[If[n == 1, 1, LCM @@ (n - Most[Divisors[n]])], {n, 50}]
a(n)=lcm(apply(d->if(dCharles R Greathouse IV, May 26 2015
For n = 16 the nontrivial divisors d are 2,4 and 8, so a(16) = (16-2)*(16-4)*(16-8) = 14*12*8 = 1344.
f:= proc(n) local d; mul(n-d, d = numtheory:-divisors(n) minus {1,n}) end proc: map(f, [$1..50]); # Robert Israel, Dec 30 2024
a(n) = my(d=divisors(n)); prod(j=2, matsize(d)[2]-1, n-d[j]);
Table T(n, k) begins: n n-th row -- ------------------ 1 0 2 0, 1 3 0, 2 4 0, 2, 3 5 0, 4 6 0, 3, 4, 5 7 0, 6 8 0, 4, 6, 7 9 0, 6, 8 10 0, 5, 8, 9 11 0, 10 12 0, 6, 8, 9, 10, 11 13 0, 12 14 0, 7, 12, 13
Table[Map[n*(# - 1)/# &, Divisors[n]], {n, 23}] // Flatten (* Michael De Vlieger, Feb 03 2025 *)
row(n) = apply (d -> n*(d-1)/d, divisors(n))
Comments