cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A072513 Product of all n - d, where d < n and d is a divisor of n.

Original entry on oeis.org

1, 1, 2, 6, 4, 60, 6, 168, 48, 360, 10, 47520, 12, 1092, 1680, 20160, 16, 440640, 18, 820800, 5040, 4620, 22, 734469120, 480, 7800, 11232, 4953312, 28, 3946320000, 30, 9999360, 21120, 17952, 28560, 439723468800, 36, 25308, 35568, 35852544000
Offset: 1

Views

Author

Amarnath Murthy, Jul 28 2002

Keywords

Examples

			a(6) = (6-1)(6-2)(6-3) = 60.
For n = 16 the divisors d < n are 1,2,4 and 8, so a(16) = (16-1)*(16-2)*(16-4)*(16-8) = 15*14*12*8 = 20160.
		

Crossrefs

Cf. A072512, A080497, A080498, A080500 (similar products), A258324 (LCM instead of product).
Cf. A027751.

Programs

  • Haskell
    a072513 n = product $ map (n -) $ a027751_row n
    -- Reinhard Zumkeller, May 27 2015
  • Mathematica
    Table[Times @@ (n - Most[Divisors[n]]), {n, 1, 40}] (* Ivan Neretin, May 26 2015 *)
  • PARI
    for(n=1,40,d=divisors(n); print1(prod(j=1,matsize(d)[2]-1,n-d[j]),","))
    
  • PARI
    a(n)=factorback(apply(d->if(dCharles R Greathouse IV, May 26 2015
    

Formula

a(n) = (n-d_1)(n-d_2)...(n-d_k) where d_k is the largest divisor of n less than n (k = tau(n) - 1).
a(p) = p-1, a(pq) = pq(p-1)(q-1)(pq-1), p and q prime.
If n is not a prime or the square of a prime then n divides a(n).

Extensions

Edited and extended by Klaus Brockhaus, Jul 31 2002

A080498 a(n) = (n-c_1)(n-c_2)...(n-c_k) where c_k is the k-th composite number and is also the largest composite number < n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 8, 15, 48, 210, 1152, 3780, 19200, 62370, 322560, 2162160, 17418240, 81081000, 567705600, 2481078600, 16907304960, 146659312800, 1504935936000, 8799558768000, 76435881984000, 819678899239200
Offset: 1

Views

Author

Amarnath Murthy, Mar 19 2003

Keywords

Examples

			a(6) = (6-4) = 2. a(10) = (10-4)(10-6)(10-8)(10-9) = 48.
		

Crossrefs

Programs

  • Mathematica
    Module[{nn=30,cmps},cmps=Select[Range[nn],CompositeQ];Table[Times@@(n-Select[ cmps,#Harvey P. Dale, Aug 13 2024 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A080500 a(n) = (n-1)(n-4)(n-9)...(n-k^2) where k^2 < n <= (k+1)^2.

Original entry on oeis.org

1, 1, 2, 3, 4, 10, 18, 28, 40, 54, 140, 264, 432, 650, 924, 1260, 1664, 4284, 8100, 13376, 20400, 29484, 40964, 55200, 72576, 93500, 236808, 443232, 728000, 1108380, 1603800, 2235968, 3028992, 4009500, 5206760, 6652800, 8382528, 20867704
Offset: 1

Views

Author

Amarnath Murthy, Mar 19 2003

Keywords

Comments

The idea of A080497 to A080500 when applied to Euler's phi function i.e. on phi-torial function defined in A001783 yields A001783 itself for obvious reasons. Is there any other such example?

Examples

			a(6) = (6-1)(6-4)= 10.
		

Crossrefs

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 06 2003

A275539 a(n) = n! + n*(n-1)!!.

Original entry on oeis.org

1, 2, 4, 12, 36, 160, 810, 5376, 41160, 366336, 3638250, 39959040, 479126340, 6227619840, 87180183090, 1307684044800, 20922822320400, 355687603568640, 6402374325997650, 121645103938928640, 2432902021271221500, 51090942249743155200, 1124000728080092512650
Offset: 0

Views

Author

Olivier Gérard, Aug 01 2016

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 2, 4, 12, 36]
          [n+1], ((n-3)^2*n*a(n-1) +(n-4)*n*(n-1)*a(n-2)
           -(n-3)*n*(n-1)*(n-2)*a(n-3))/((n-4)*(n-2)))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Dec 07 2016
  • Mathematica
    Table[n! + n (n-1)!!, {n, 0, 20}] (* Bruno Berselli, Aug 11 2016 *)

Formula

a(n) = n! + n*(n-1)!! = n*((n-1)! + (n-1)!!).
Showing 1-4 of 4 results.