cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073722 Least k such that sigma(k) mod primepi(k) = n or zero if no such number exists.

Original entry on oeis.org

2, 4, 10, 8, 17, 42, 23, 111, 32, 59, 31, 67, 49, 110, 63, 60, 82, 84, 89, 75, 191, 98, 141, 97, 101, 256, 171, 169, 148, 144, 140, 159, 143, 222, 220, 172, 206, 2124, 183, 315, 263, 567, 201, 358, 204, 470, 243, 391, 264, 563, 295, 382, 290, 285, 313, 324, 307
Offset: 0

Views

Author

Labos Elemer, Aug 05 2002

Keywords

Examples

			n=8: a(8)=32 since sigma(32)=63, primepi(32)=11, and 63 mod 11 = 8.
		

Crossrefs

Programs

  • Mathematica
    t=Table[0, {100}]; Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 2, 10000}]; t

Formula

a(n) = min{x: A000203(x) mod A000720(x) = n}.

Extensions

a(0)=2 inserted by Sean A. Irvine, Dec 16 2024

A073723 Numbers k such that sigma(k) mod pi(k) = 1.

Original entry on oeis.org

4, 9, 16, 64, 69, 218, 592, 808, 910, 1921, 1957, 2648, 2860, 7609, 13462, 14953, 16838, 20688, 27050, 44471, 80440, 91860, 122351, 131095, 154606, 166121, 171396, 226831, 257467, 318016, 614626, 726560, 1225277, 1366686, 1465910, 1508284, 1790754, 1816934, 1873100
Offset: 1

Views

Author

Labos Elemer, Aug 05 2002

Keywords

Crossrefs

Cf. A000203 (sigma), A000720 (pi), A072548.

Programs

  • Mathematica
    Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s==1, Print[n]], {n, 1, 1000000}]
  • PARI
    isok(k) = k > 1 && sigma(k) % primepi(k) == 1 \\ Andrew Howroyd, Dec 12 2024
    
  • PARI
    list(lim) = {my(i = 1, p = 2); forprime(q = 3, lim, for(k = p, q-1, if(sigma(k) % i == 1, print1(k, ", "))); i++; p = q);} \\ Amiram Eldar, Mar 18 2025

Extensions

More terms from Amiram Eldar, Mar 18 2025
Showing 1-2 of 2 results.