A073722 Least k such that sigma(k) mod primepi(k) = n or zero if no such number exists.
2, 4, 10, 8, 17, 42, 23, 111, 32, 59, 31, 67, 49, 110, 63, 60, 82, 84, 89, 75, 191, 98, 141, 97, 101, 256, 171, 169, 148, 144, 140, 159, 143, 222, 220, 172, 206, 2124, 183, 315, 263, 567, 201, 358, 204, 470, 243, 391, 264, 563, 295, 382, 290, 285, 313, 324, 307
Offset: 0
Keywords
Examples
n=8: a(8)=32 since sigma(32)=63, primepi(32)=11, and 63 mod 11 = 8.
Links
- Sean A. Irvine, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
t=Table[0, {100}]; Do[s=Mod[DivisorSigma[1, n], PrimePi[n]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 2, 10000}]; t
Extensions
a(0)=2 inserted by Sean A. Irvine, Dec 16 2024