cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072691 Decimal expansion of Pi^2/12.

Original entry on oeis.org

8, 2, 2, 4, 6, 7, 0, 3, 3, 4, 2, 4, 1, 1, 3, 2, 1, 8, 2, 3, 6, 2, 0, 7, 5, 8, 3, 3, 2, 3, 0, 1, 2, 5, 9, 4, 6, 0, 9, 4, 7, 4, 9, 5, 0, 6, 0, 3, 3, 9, 9, 2, 1, 8, 8, 6, 7, 7, 7, 9, 1, 1, 4, 6, 8, 5, 0, 0, 3, 7, 3, 5, 2, 0, 1, 6, 0, 0, 4, 3, 6, 9, 1, 6, 8, 1, 4, 4, 5, 0, 3, 0, 9, 8, 7, 9, 3, 5, 2, 6, 5, 2, 0, 0, 2
Offset: 0

Views

Author

Rick L. Shepherd, Jul 02 2002

Keywords

Examples

			0.822467033424113218236207583323..
		

References

  • C. C. Clawson, The Beauty and Magic of Numbers. New York: Plenum Press (1996): 98
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.11 p. 126 and section 8.5 p. 501.
  • Jolley, Summation of Series, Dover (1961) eq. (234) page 44.

Crossrefs

Cf. A072692 (Pi^2/12 is in asymptotic formula related to sigma(n), A000203).
Cf. A113319 (sum_{i>=0} 1/(i^2+1)); A232883 (sum_{i>=0} 1/(2*i^2+1)).

Programs

Formula

Equals 1/(1*2) + 1/(2*4) + 1/(3*6) + 1/(4*8) + ... [Jolley]
Equals -dilogarithm(-1). - Rick L. Shepherd, Jul 21 2004
Equals Sum_{n>=1} ((-1)^(n+1))/n^2 [Clawson]. - Alonso del Arte, Aug 15 2012
Equals Integral_{x=0..1} log((1+x^3)/(1-x^3))/x dx. - Bruno Berselli, May 13 2013
From Jean-François Alcover, May 17 2013: (Start)
Equals zeta(2)/2 = A013661/2.
Equals Integral_{x=1..2} log(x)/(x-1) dx. (End)
Equals lim_{n->infinity} A244583(n)/prime(n)^2. See A244583 for details. - Richard R. Forberg, Jan 04 2015
Equals Sum_{k>=1} H(k)/(k*2^k), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 20 2020
Equals Integral_{0..infinity} x/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8, for s=2, p. 801. - Wolfdieter Lang, Sep 16 2020
Equals lim_{n->infinity} A024916(n)/(n^2). - Omar E. Pol, Dec 15 2021
Integral_{x=0..1} -log(x)/(x+1) dx. - Bernard Schott, Apr 25 2022
Equals 1/2 + Sum_{k>=1} H(k)/(k*(k+1)*(k+2)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number (Bracken, 2023). - Amiram Eldar, Oct 06 2023
Equals Integral_{x >= 0} x^2/cosh(x)^2 dx. - Peter Bala, Jun 20 2024
Equals 1 + (1/8)*Sum_{k >= 0} (-1)^(k-1) * (10*k + 13)/((k + 1)*(2*k + 1)^2*(2*k + 3)^2*binomial(2*k, k)). See Catalan, Section 35, equation 54. - Peter Bala, Aug 17 2024
Equals Integral_{x=0..oo} ((arctan(x) - Pi/4)*log(x^2 + 1))/(x^2) dx. - Kritsada Moomuang, Jun 04 2025