cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072706 Number of unimodal partitions/compositions of n into distinct terms.

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 9, 11, 15, 21, 33, 39, 55, 69, 93, 127, 159, 201, 261, 327, 411, 537, 653, 819, 1011, 1257, 1529, 1899, 2331, 2829, 3441, 4179, 5031, 6093, 7305, 8767, 10575, 12573, 14997, 17847, 21223, 25089, 29757, 35055, 41379, 48801, 57285, 67131
Offset: 0

Views

Author

Henry Bottomley, Jul 04 2002

Keywords

Comments

Also the number of ways to partition a strict integer partition of n into two unordered blocks. - Gus Wiseman, Dec 31 2019

Examples

			a(6)=9 since 6 can be written as 1+2+3, 1+3+2, 1+5, 2+3+1, 2+4, 3+2+1, 4+2, 5+1, or 6, but not for example 1+4+1 (which does not have distinct terms) nor 2+1+3 (which is not unimodal).
From _Joerg Arndt_, Mar 25 2014: (Start)
The a(10) = 33 such compositions of 10 are:
01:  [ 1 2 3 4 ]
02:  [ 1 2 4 3 ]
03:  [ 1 2 7 ]
04:  [ 1 3 4 2 ]
05:  [ 1 3 6 ]
06:  [ 1 4 3 2 ]
07:  [ 1 4 5 ]
08:  [ 1 5 4 ]
09:  [ 1 6 3 ]
10:  [ 1 7 2 ]
11:  [ 1 9 ]
12:  [ 2 3 4 1 ]
13:  [ 2 3 5 ]
14:  [ 2 4 3 1 ]
15:  [ 2 5 3 ]
16:  [ 2 7 1 ]
17:  [ 2 8 ]
18:  [ 3 4 2 1 ]
19:  [ 3 5 2 ]
20:  [ 3 6 1 ]
21:  [ 3 7 ]
22:  [ 4 3 2 1 ]
23:  [ 4 5 1 ]
24:  [ 4 6 ]
25:  [ 5 3 2 ]
26:  [ 5 4 1 ]
27:  [ 6 3 1 ]
28:  [ 6 4 ]
29:  [ 7 2 1 ]
30:  [ 7 3 ]
31:  [ 8 2 ]
32:  [ 9 1 ]
33:  [ 10 ]
(End)
		

Crossrefs

The non-strict version is A001523.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1,
          expand(b(n, i-1) +`if`(i>n, 0, x*b(n-i, i-1)))))
        end:
    a:= n->(p->add(coeff(p, x, i)*ceil(2^(i-1)), i=0..degree(p)))(b(n$2)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 25 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n > i*(i + 1)/2, 0, If[n == 0, 1, Expand[b[n, i - 1] + If[i > n, 0, x*b[n - i, i - 1]]]]]; a[n_] := Function[{p}, Sum[Coefficient[p, x, i]*Ceiling[2^(i - 1)], {i, 0, Exponent[p, x]}]][b[n, n]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jan 16 2015, after Alois P. Heinz *)
    Table[If[n==0,1,Sum[2^(Length[ptn]-1),{ptn,Select[IntegerPartitions[n],UnsameQ@@#&]}]],{n,0,15}] (* Gus Wiseman, Dec 31 2019 *)
  • PARI
    N=66; q='q+O('q^N); Vec( 1 + sum(n=1, N, 2^(n-1)*q^(n*(n+1)/2) / prod(k=1, n, 1-q^k ) ) ) \\ Joerg Arndt, Mar 25 2014

Formula

a(n) = sum_k A072705(n, k) = A032020(n)-A072707(k) = A032302(n)/2 (n>0).
G.f.: 1/2*(1+Product_{k>0} (1+2*x^k)). - Vladeta Jovovic, Jun 24 2003
G.f.: 1 + sum(n>=1, 2^(n-1)*q^(n*(n+1)/2) / prod(k=1..n, 1-q^k ) ). [Joerg Arndt, Jan 20 2014]
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (4*sqrt(3*Pi)*n^(3/4)), where c = -polylog(2, -2) = A266576 = 1.436746366883680946362902023893583354... - Vaclav Kotesovec, Sep 22 2019