cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A001523 Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0

Views

Author

Keywords

Comments

a(n) counts stacks of integer-length boards of total length n where no board overhangs the board underneath.
Number of graphical partitions on 2n nodes that contain a 1. E.g. a(3)=4 and so there are 4 graphical partitions of 6 that contain a 1, namely (111111), (21111), (2211) and (3111). Only (222) fails. - Jon Perry, Jul 25 2003
It would seem from Stanley that he regards a(0)=0 for this sequence and A001522. - Michael Somos, Feb 22 2015
In the article by Auluck is a typo in the formula (24), 2*Pi is missing in an exponent on the left side of the equation for Q(n). The correct term is exp(2*Pi*sqrt(n/3)), not just exp(sqrt(n/3)). - Vaclav Kotesovec, Jun 22 2015

Examples

			For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (121)   (113)
                    (211)   (122)
                    (1111)  (131)
                            (221)
                            (311)
                            (1112)
                            (1121)
                            (1211)
                            (2111)
                            (11111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.

Crossrefs

Cf. A000569. Bisections give A100505, A100506.
Row sums of A247255.
Row sums of A072704.
The strict case is A072706.
The complement is counted by A115981.
The case covering an initial interval is A227038.
The version whose negation is unimodal as well appears to be A329398.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal sequences covering an initial interval are A328509.
Partitions with unimodal run-lengths are A332280.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
The number of unimodal permutations of the prime indices of n is A332288.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Magma
    m:=100;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
  • Maple
    b:= proc(n, i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
    
  • Python
    def b(n, i):
        if i>n: return 0
        if n%i==0: x=1
        else: x=0
        return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
    def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
    

Formula

a(n) = Sum_{k=1..n} f(k, n-k), where f(n, k) (= A054250) = 1 if k = 0; Sum_{j=1..min(n, k)} (n-j+1)*f(j, k-j) if k > 0. - David W. Wilson, May 05 2000
a(n) = Sum_{k} A059623(n, k) for n > 0. - Henry Bottomley, Feb 01 2001
A006330(n) + a(n) = A000712(n). - Michael Somos, Jul 22 2003
G.f.: 1 + (Sum_{k>0} -(-1)^k x^(k(k+1)/2))/(Product_{k>0} (1-x^k))^2. - Michael Somos, Jul 22 2003
G.f.: 1 + Sum_{n>=1} (x^n / ( ( Product_{k=1..n-1} (1 - x^k)^2 ) * (1-x^n) ) ). - Joerg Arndt, Oct 01 2012
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. - Vaclav Kotesovec, Jun 22 2015
a(n) + A115981(n) = 2^(n - 1). - Gus Wiseman, Mar 04 2020

Extensions

More terms from David W. Wilson, May 05 2000
Definition corrected by Wolfdieter Lang, Dec 05 2018

A000212 a(n) = floor(n^2/3).

Original entry on oeis.org

0, 0, 1, 3, 5, 8, 12, 16, 21, 27, 33, 40, 48, 56, 65, 75, 85, 96, 108, 120, 133, 147, 161, 176, 192, 208, 225, 243, 261, 280, 300, 320, 341, 363, 385, 408, 432, 456, 481, 507, 533, 560, 588, 616, 645, 675, 705, 736, 768, 800, 833, 867, 901, 936
Offset: 0

Views

Author

Keywords

Comments

Let M_n be the n X n matrix of the following form: [3 2 1 0 0 0 0 0 0 0 / 2 3 2 1 0 0 0 0 0 0 / 1 2 3 2 1 0 0 0 0 0 / 0 1 2 3 2 1 0 0 0 0 / 0 0 1 2 3 2 1 0 0 0 / 0 0 0 1 2 3 2 1 0 0 / 0 0 0 0 1 2 3 2 1 0 / 0 0 0 0 0 1 2 3 2 1 / 0 0 0 0 0 0 1 2 3 2 / 0 0 0 0 0 0 0 1 2 3]. Then for n > 2 a(n) = det M_(n-2). - Benoit Cloitre, Jun 20 2002
Largest possible size for the directed Cayley graph on two generators having diameter n - 2. - Ralf Stephan, Apr 27 2003
It seems that for n >= 2, a(n) is the maximum number of non-overlapping 1 X 3 rectangles that can be packed into an n X n square. Rectangles can only be placed parallel to the sides of the square. Verified with Lobato's tool, see links. - Dmitry Kamenetsky, Aug 03 2009
Maximum number of edges in a K4-free graph with n vertices. - Yi Yang, May 23 2012
3a(n) + 1 = y^2 if n is not 0 mod 3 and 3a(n) = y^2 otherwise. - Jon Perry, Sep 10 2012
Apart from the initial term this is the elliptic troublemaker sequence R_n(1, 3) (also sequence R_n(2, 3)) in the notation of Stange (see Table 1, p. 16). For other elliptic troublemaker sequences R_n(a, b) see the cross references below. - Peter Bala, Aug 08 2013
The number of partitions of 2n into exactly 3 parts. - Colin Barker, Mar 22 2015
a(n-1) is the maximum number of non-overlapping triples (i,k), (i+1, k+1), (i+2, k+2) in an n X n matrix. Details: The triples are distributed along the main diagonal and 2*(n-1) other diagonals. Their maximum number is floor(n/3) + 2*Sum_{k = 1..n-1} floor(k/3) = floor((n-1)^2/3). - Gerhard Kirchner, Feb 04 2017
Conjecture: a(n) is the number of intersection points of n cevians that cut a triangle into the maximum number of pieces (see A007980). - Anton Zakharov, May 07 2017
From Gus Wiseman, Oct 05 2020: (Start)
Also the number of unimodal triples (meaning the middle part is not strictly less than both of the other two) of positive integers summing to n + 1. The a(2) = 1 through a(6) = 12 triples are:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5)
(1,2,1) (1,2,2) (1,2,3) (1,2,4)
(2,1,1) (1,3,1) (1,3,2) (1,3,3)
(2,2,1) (1,4,1) (1,4,2)
(3,1,1) (2,2,2) (1,5,1)
(2,3,1) (2,2,3)
(3,2,1) (2,3,2)
(4,1,1) (2,4,1)
(3,2,2)
(3,3,1)
(4,2,1)
(5,1,1)
(End)

Examples

			G.f. = x^2 + 3*x^3 + 5*x^4 + 8*x^5 + 12*x^6 + 16*x^7 + 21*x^8 + 27*x^9 + 33*x^10 + ...
From _Gus Wiseman_, Oct 07 2020: (Start)
The a(2) = 1 through a(6) = 12 partitions of 2*n into exactly 3 parts (Barker) are the following. The Heinz numbers of these partitions are given by the intersection of A014612 (triples) and A300061 (even sum).
  (2,1,1)  (2,2,2)  (3,3,2)  (4,3,3)  (4,4,4)
           (3,2,1)  (4,2,2)  (4,4,2)  (5,4,3)
           (4,1,1)  (4,3,1)  (5,3,2)  (5,5,2)
                    (5,2,1)  (5,4,1)  (6,3,3)
                    (6,1,1)  (6,2,2)  (6,4,2)
                             (6,3,1)  (6,5,1)
                             (7,2,1)  (7,3,2)
                             (8,1,1)  (7,4,1)
                                      (8,2,2)
                                      (8,3,1)
                                      (9,2,1)
                                      (10,1,1)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000290, A007590 (= R_n(2,4)), A002620 (= R_n(1,2)), A118015, A056827, A118013.
Cf. A033436 (= R_n(1,4) = R_n(3,4)), A033437 (= R_n(1,5) = R_n(4,5)), A033438 (= R_n(1,6) = R_n(5,6)), A033439 (= R_n(1,7) = R_n(6,7)), A033440, A033441, A033442, A033443, A033444.
Cf. A001353 and A004523 (first differences). A184535 (= R_n(2,5) = R_n(3,5)).
Cf. A238738. - Bruno Berselli, Apr 17 2015
Cf. A005408.
A000217(n-2) counts 3-part compositions.
A014612 ranks 3-part partitions, with strict case A007304.
A069905 counts the 3-part partitions.
A211540 counts strict 3-part partitions.
A337453 ranks strict 3-part compositions.
A001399(n-6)*4 is the strict version.
A001523 counts unimodal compositions, with strict case A072706.
A001840(n-4) is the non-unimodal version.
A001399(n-6)*2 is the strict non-unimodal version.
A007052 counts unimodal patterns.
A115981 counts non-unimodal compositions, ranked by A335373.
A011782 counts unimodal permutations.
A335373 is the complement of a ranking sequence for unimodal compositions.
A337459 ranks these compositions, with complement A337460.

Programs

  • Magma
    [Floor(n^2 / 3): n in [0..50]]; // Vincenzo Librandi, May 08 2011
    
  • Maple
    A000212:=(-1+z-2*z**2+z**3-2*z**4+z**5)/(z**2+z+1)/(z-1)**3; # Conjectured by Simon Plouffe in his 1992 dissertation. Gives sequence with an additional leading 1.
    A000212 := proc(n) option remember; `if`(n<4, [0,0,1,3][n+1], a(n-1)+a(n-3) -a(n-4)+2) end; # Peter Luschny, Nov 20 2011
  • Mathematica
    Table[Quotient[n^2, 3], {n, 0, 59}] (* Michael Somos, Jan 22 2014 *)
  • PARI
    {a(n) = n^2 \ 3}; /* Michael Somos, Sep 25 2006 */
    
  • Python
    def A000212(n): return n**2//3 # Chai Wah Wu, Jun 07 2022

Formula

G.f.: x^2*(1+x)/((1-x)^2*(1-x^3)). - Franklin T. Adams-Watters, Apr 01 2002
Euler transform of length 3 sequence [ 3, -1, 1]. - Michael Somos, Sep 25 2006
G.f.: x^2 * (1 - x^2) / ((1 - x)^3 * (1 - x^3)). a(-n) = a(n). - Michael Somos, Sep 25 2006
a(n) = Sum_{k = 0..n} A011655(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
a(n) = a(n-1) + a(n-3) - a(n-4) + 2 for n >= 4. - Alexander Burstein, Nov 20 2011
a(n) = a(n-3) + A005408(n-2) for n >= 3. - Alexander Burstein, Feb 15 2013
a(n) = (n-1)^2 - a(n-1) - a(n-2) for n >= 2. - Richard R. Forberg, Jun 05 2013
Sum_{n >= 2} 1/a(n) = (27 + 6*sqrt(3)*Pi + 2*Pi^2)/36. - Enrique Pérez Herrero, Jun 29 2013
0 = a(n)*(a(n+2) + a(n+3)) + a(n+1)*(-2*a(n+2) - a(n+3) + a(n+4)) + a(n+2)*(a(n+2) - 2*a(n+3) + a(n+4)) for all n in Z. - Michael Somos, Jan 22 2014
a(n) = Sum_{k = 1..n} k^2*A049347(n+2-k). - Mircea Merca, Feb 04 2014
a(n) = Sum_{i = 1..n+1} (ceiling(i/3) + floor(i/3) - 1). - Wesley Ivan Hurt, Jun 06 2014
a(n) = Sum_{j = 1..n} Sum_{i=1..n} ceiling((i+j-n-1)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = Sum_{i = 1..n} floor(2*i/3). - Wesley Ivan Hurt, May 22 2017
a(-n) = a(n). - Paul Curtz, Jan 19 2020
a(n) = A001399(2*n - 3). - Gus Wiseman, Oct 07 2020
a(n) = (1/6)*(2*n^2 - 3 + gcd(n,3)). - Ridouane Oudra, Apr 15 2021
E.g.f.: (exp(x)*(-2 + 3*x*(1 + x)) + 2*exp(-x/2)*cos(sqrt(3)*x/2))/9. - Stefano Spezia, Oct 24 2022
Sum_{n>=2} (-1)^n/a(n) = Pi/sqrt(3) - Pi^2/36 - 3/4. - Amiram Eldar, Dec 02 2022

Extensions

Edited by Charles R Greathouse IV, Apr 19 2010

A133494 Diagonal of the array of iterated differences of A047848.

Original entry on oeis.org

1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0

Views

Author

Paul Barry, Paul Curtz, Dec 23 2007

Keywords

Comments

a(n) is the number of ways to choose a composition C, and then choose a composition of each part of C. - Geoffrey Critzer, Mar 19 2012
a(n) is the top left entry of the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n) is the reptend length of 1/3^(n+1) in decimal. - Jianing Song, Nov 14 2018
Also the number of pairs of integer compositions, the first summing to n and the second with sum equal to the length of the first. If an integer composition is regarded as an arrow from sum to length, these are composable pairs, and the obvious composition operation founds a category of integer compositions. For example, we have (2,1,1,4) . (1,2,1) . (1,2) = (2,6), where dots represent the composition operation. The version without empty compositions is A000244. Composable triples are counted by 1 followed by A000302. The unordered version is A022811. - Gus Wiseman, Jul 14 2022

Examples

			From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
  ()  (1)  (2)      (3)
           (1,1)    (1,2)
           (1),(1)  (2,1)
                    (1,1,1)
                    (1),(2)
                    (2),(1)
                    (1),(1,1)
                    (1,1),(1)
                    (1),(1),(1)
(End)
		

Crossrefs

The strict version is A336139.
Splittings of partitions are A323583.
Multiset partitions of partitions are A001970.
Partitions of each part of a partition are A063834.
Compositions of each part of a partition are A075900.
Strict partitions of each part of a strict partition are A279785.
Compositions of each part of a strict partition are A304961.
Strict compositions of each part of a composition are A307068.
Compositions of each part of a strict composition are A336127.

Programs

Formula

Binomial transform of A078008. - Paul Curtz, Aug 04 2008
From R. J. Mathar, Nov 11 2008: (Start)
G.f.: (1 - 2*x)/(1 - 3*x).
a(n) = A000244(n-1), n > 0. (End)
From Philippe Deléham, Nov 13 2008: (Start)
a(n) = Sum_{k=0..n} A112467(n,k)*2^k.
a(n) = Sum_{k=0..n} A071919(n,k)*2^k. (End)
Let A(x) be the g.f. Then B(x) = x*A(x) satisfies B(x/(1-x)) = x/(1 - 2*B(x)). - Vladimir Kruchinin, Dec 05 2011
G.f.: 1/(1 - (Sum_{k>=1} (x/(1 - x))^k)). - Joerg Arndt, Sep 30 2012
For n > 0, a(n) = 2*(Sum_{k=0..n-1} a(k)) - 1 = 3^(n-1). - J. Conrad, Oct 29 2015
G.f.: 1 + x/(1 + x)*(1 + 4*x/(1 + 4*x)*(1 + 7*x/(1 + 7*x)*(1 + 10*x/(1 + 10*x)*(1 + .... - Peter Bala, May 27 2017
Invert transform of A011782(n) = 2^(n-1). Second invert transform of A000012. - Gus Wiseman, Jul 19 2020
a(n) = ceiling(3^(n-1)). - Alois P. Heinz, Jul 26 2020
From Elmo R. Oliveira, Mar 31 2025: (Start)
E.g.f.: (2 + exp(3*x))/3.
a(n) = 3*a(n-1) for n > 1. (End)

Extensions

Definition clarified by R. J. Mathar, Nov 11 2008

A032302 G.f.: Product_{k>=1} (1 + 2*x^k).

Original entry on oeis.org

1, 2, 2, 6, 6, 10, 18, 22, 30, 42, 66, 78, 110, 138, 186, 254, 318, 402, 522, 654, 822, 1074, 1306, 1638, 2022, 2514, 3058, 3798, 4662, 5658, 6882, 8358, 10062, 12186, 14610, 17534, 21150, 25146, 29994, 35694, 42446, 50178, 59514, 70110, 82758, 97602, 114570, 134262
Offset: 0

Views

Author

Christian G. Bower, Apr 01 1998

Keywords

Comments

"EFK" (unordered, size, unlabeled) transform of 2,2,2,2,...
Number of partitions into distinct parts of 2 sorts, see example. - Joerg Arndt, May 22 2013
In general, for a fixed integer m > 0, if g.f. = Product_{k>=1} (1 + m*x^k) then a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt((m+1)*Pi)*n^(3/4)), where c = Pi^2/6 + log(m)^2/2 + polylog(2, -1/m) = -polylog(2, -m). - Vaclav Kotesovec, Jan 04 2016
Antidiagonal sums of A284593. - Peter Bala, Mar 30 2017

Examples

			From _Joerg Arndt_, May 22 2013: (Start)
There are a(7) = 22 partitions of 7 into distinct parts of 2 sorts (format P:S for part:sort):
01:  [ 1:0  2:0  4:0  ]
02:  [ 1:0  2:0  4:1  ]
03:  [ 1:0  2:1  4:0  ]
04:  [ 1:0  2:1  4:1  ]
05:  [ 1:0  6:0  ]
06:  [ 1:0  6:1  ]
07:  [ 1:1  2:0  4:0  ]
08:  [ 1:1  2:0  4:1  ]
09:  [ 1:1  2:1  4:0  ]
10:  [ 1:1  2:1  4:1  ]
11:  [ 1:1  6:0  ]
12:  [ 1:1  6:1  ]
13:  [ 2:0  5:0  ]
14:  [ 2:0  5:1  ]
15:  [ 2:1  5:0  ]
16:  [ 2:1  5:1  ]
17:  [ 3:0  4:0  ]
18:  [ 3:0  4:1  ]
19:  [ 3:1  4:0  ]
20:  [ 3:1  4:1  ]
21:  [ 7:0  ]
22:  [ 7:1  ]
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, 2*b(n-i, i-1))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, Aug 24 2015
    # Alternatively:
    simplify(expand(QDifferenceEquations:-QPochhammer(-2,x,99)/3,x)):
    seq(coeff(%,x,n), n=0..47); # Peter Luschny, Nov 17 2016
  • Mathematica
    nn=47; CoefficientList[Series[Product[1+2x^i,{i,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 07 2013 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[(-1)^(k+1)*2^k/k*x^k/(1-x^k), {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 25 2015 *)
    (QPochhammer[-2, x]/3 + O[x]^58)[[3]] (* Vladimir Reshetnikov, Nov 20 2015 *)
  • PARI
    N=66; x='x+O('x^N); Vec(prod(n=1,N, 1+2*x^n)) \\ Joerg Arndt, May 22 2013

Formula

a(n) = A072706(n)*2 for n>=1.
G.f.: Sum_{n>=0} (2^n*q^(n*(n+1)/2) / Product_{k=1..n} (1-q^k ) ). - Joerg Arndt, Jan 20 2014
a(n) = (1/3) [x^n] QPochhammer(-2,x). - Vladimir Reshetnikov, Nov 20 2015
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(3*Pi)*n^(3/4)), where c = Pi^2/6 + log(2)^2/2 + polylog(2, -1/2) = 1.43674636688368094636290202389358335424... . Equivalently, c = A266576 = Pi^2/12 + log(2)^2 + polylog(2, 1/4)/2. - Vaclav Kotesovec, Jan 04 2016

A332578 Number of compositions of n whose negation is unimodal.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 36, 57, 91, 140, 217, 323, 485, 711, 1039, 1494, 2144, 3032, 4279, 5970, 8299, 11438, 15708, 21403, 29065, 39218, 52725, 70497, 93941, 124562, 164639, 216664, 284240, 371456, 484004, 628419, 813669, 1050144, 1351757, 1734873, 2221018, 2835613
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 13 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (211)   (113)
                    (1111)  (122)
                            (212)
                            (221)
                            (311)
                            (1112)
                            (2111)
                            (11111)
		

Crossrefs

Dominated by A001523 (unimodal compositions).
The strict case is A072706.
The case that is unimodal also is A329398.
The complement is counted by A332669.
Row sums of A332670.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions whose run-lengths are unimodal are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Numbers whose unsorted prime signature is not unimodal are A332642.
Partitions whose negated 0-appended differences are unimodal are A332728.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[-#]&]],{n,0,10}]
    nmax = 50; CoefficientList[Series[1 + Sum[x^j*(1 - x^j)/Product[1 - x^k, {k, j, nmax - j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 01 2020 *)
  • PARI
    seq(n)={Vec(1 + sum(j=1, n, x^j/((1-x^j)*prod(k=j+1, n-j, 1 - x^k + O(x*x^(n-j)))^2)))} \\ Andrew Howroyd, Mar 01 2020

Formula

a(n) + A332669(n) = 2^(n - 1).
G.f.: 1 + Sum_{j>0} x^j/((1 - x^j)*(Product_{k>j} 1 - x^k)^2). - Andrew Howroyd, Mar 01 2020
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Mar 01 2020

Extensions

Terms a(26) and beyond from Andrew Howroyd, Mar 01 2020

A332669 Number of compositions of n whose negation is not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 11, 28, 71, 165, 372, 807, 1725, 3611, 7481, 15345, 31274, 63392, 128040, 257865, 518318, 1040277, 2085714, 4178596, 8367205, 16748151, 33515214, 67056139, 134147231, 268341515, 536746350, 1073577185, 2147266984, 4294683056, 8589563136, 17179385180
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 11 compositions:
  (121)  (131)   (132)
         (1121)  (141)
         (1211)  (231)
                 (1131)
                 (1212)
                 (1221)
                 (1311)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The strict case is A072707.
The complement is counted by A332578.
The version for run-lengths of partitions is A332639.
The version for unsorted prime signature is A332642.
The version for 0-appended first-differences of partitions is A332744.
The case that is not unimodal either is A332870.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose unsorted prime signature is not unimodal are A332282.
A triangle for compositions with unimodal negation is A332670.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[-#]&]],{n,0,10}]

Formula

a(n) + A332578(n) = 2^(n - 1) for n > 0.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 01 2020

A332280 Number of integer partitions of n with unimodal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0

Views

Author

Gus Wiseman, Feb 18 2020

Keywords

Comments

First differs from A000041 at a(10) = 41, A000041(10) = 42.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 41 partitions (A = 10) are:
  (A)     (61111)   (4321)     (3211111)
  (91)    (55)      (43111)    (31111111)
  (82)    (541)     (4222)     (22222)
  (811)   (532)     (42211)    (222211)
  (73)    (5311)    (421111)   (2221111)
  (721)   (5221)    (4111111)  (22111111)
  (7111)  (52111)   (3331)     (211111111)
  (64)    (511111)  (3322)     (1111111111)
  (631)   (442)     (331111)
  (622)   (4411)    (32221)
  (6211)  (433)     (322111)
Missing from this list is only (33211).
		

Crossrefs

The complement is counted by A332281.
Heinz numbers of these partitions are the complement of A332282.
Taking 0-appended first-differences instead of run-lengths gives A332283.
The normal case is A332577.
The opposite version is A332638.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Numbers whose unsorted prime signature is unimodal are A332288.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332281 Number of integer partitions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 1 through a(15) = 10 partitions:
  (33211)  (332111)  (44211)    (44311)     (55211)      (44322)
                     (3321111)  (333211)    (433211)     (55311)
                                (442111)    (443111)     (443211)
                                (33211111)  (3332111)    (533211)
                                            (4421111)    (552111)
                                            (332111111)  (4332111)
                                                         (4431111)
                                                         (33321111)
                                                         (44211111)
                                                         (3321111111)
		

Crossrefs

The complement is counted by A332280.
The Heinz numbers of these partitions are A332282.
The opposite version is A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> combinat[numbpart](n)-b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := PartitionsP[n] - b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A332283 Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 30, 38, 49, 59, 73, 90, 108, 129, 159, 184, 216, 258, 298, 347, 410, 466, 538, 626, 707, 807, 931, 1043, 1181, 1351, 1506, 1691, 1924, 2132, 2382, 2688, 2971, 3300, 3704, 4073, 4500, 5021, 5510, 6065, 6740, 7362, 8078
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

First differs from A000041 at a(6) = 10, A000041(6) = 11.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (421)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Partitions with unimodal run-lengths are A332280.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
The complement is counted by A332284.
The strict case is A332285.
Heinz numbers of partitions not in this class are A332287.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}]

A337561 Number of pairwise coprime strict compositions of n, where a singleton is not considered coprime unless it is (1).

Original entry on oeis.org

1, 1, 0, 2, 2, 4, 8, 6, 16, 12, 22, 40, 40, 66, 48, 74, 74, 154, 210, 228, 242, 240, 286, 394, 806, 536, 840, 654, 1146, 1618, 2036, 2550, 2212, 2006, 2662, 4578, 4170, 7122, 4842, 6012, 6214, 11638, 13560, 16488, 14738, 15444, 16528, 25006, 41002, 32802
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2020

Keywords

Examples

			The a(1) = 1 through a(9) = 12 compositions (empty column shown as dot):
   (1)  .  (1,2)  (1,3)  (1,4)  (1,5)    (1,6)  (1,7)    (1,8)
           (2,1)  (3,1)  (2,3)  (5,1)    (2,5)  (3,5)    (2,7)
                         (3,2)  (1,2,3)  (3,4)  (5,3)    (4,5)
                         (4,1)  (1,3,2)  (4,3)  (7,1)    (5,4)
                                (2,1,3)  (5,2)  (1,2,5)  (7,2)
                                (2,3,1)  (6,1)  (1,3,4)  (8,1)
                                (3,1,2)         (1,4,3)  (1,3,5)
                                (3,2,1)         (1,5,2)  (1,5,3)
                                                (2,1,5)  (3,1,5)
                                                (2,5,1)  (3,5,1)
                                                (3,1,4)  (5,1,3)
                                                (3,4,1)  (5,3,1)
                                                (4,1,3)
                                                (4,3,1)
                                                (5,1,2)
                                                (5,2,1)
		

Crossrefs

A072706 counts unimodal strict compositions.
A220377*6 counts these compositions of length 3.
A305713 is the unordered version.
A337462 is the not necessarily strict version.
A000740 counts relatively prime compositions, with strict case A332004.
A051424 counts pairwise coprime or singleton partitions.
A101268 considers all singletons to be coprime, with strict case A337562.
A178472 counts compositions with a common factor > 1.
A327516 counts pairwise coprime partitions, with strict case A305713.
A328673 counts pairwise non-coprime partitions.
A333228 ranks compositions whose distinct parts are pairwise coprime.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],#=={}||UnsameQ@@#&&CoprimeQ@@#&]],{n,0,10}]

Formula

a(n) = A337562(n) - 1 for n > 1.
Showing 1-10 of 41 results. Next