A001523
Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0
For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686, g(x).
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- H. Bottomley, Illustration of initial terms
- Shouvik Datta, Matthias R. Gaberdiel, Wei Li, and Cheng Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(1,z).
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 46.
- Rigoberto Flórez, José L. Ramírez, and Diego Villamizar, Restricted bargraphs and unimodal compositions, J. Comb. Theory, Series A, (2024) Vol. 208, Art. No. 105934.
- R. C. Rhoades, Strongly Unimodal Sequences and Mixed Mock Modular Forms
- Alan D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Unimodal Sequence
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
The complement is counted by
A115981.
The case covering an initial interval is
A227038.
The version whose negation is unimodal as well appears to be
A329398.
Unimodal sequences covering an initial interval are
A007052.
Non-unimodal permutations are
A059204.
Non-unimodal sequences covering an initial interval are
A328509.
Partitions with unimodal run-lengths are
A332280.
Numbers whose prime signature is not unimodal are
A332282.
Partitions whose 0-appended first differences are unimodal are
A332283.
The number of unimodal permutations of the prime indices of n is
A332288.
Compositions whose negation is unimodal are
A332578.
Compositions whose run-lengths are unimodal are
A332726.
-
m:=100;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
-
b:= proc(n, i) option remember;
`if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
add(b(n-i*j, i+1)*(j+1), j=0..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
-
def b(n, i):
if i>n: return 0
if n%i==0: x=1
else: x=0
return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
A115981
The number of compositions of n which cannot be viewed as stacks.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 5, 17, 49, 126, 303, 694, 1536, 3312, 7009, 14619, 30164, 61732, 125568, 254246, 513048, 1032696, 2074875, 4163256, 8345605, 16717996, 33473334, 66998380, 134067959, 268233386, 536599508, 1073378850, 2147000209
Offset: 0
a(5) = 1 counting {212}.
a(6) = 5 counting {1212, 2112,2121,213,312}.
a(7) = 17 counting {11212, 12112,12121, 21211, 21121, 21112, 2122, 2212, 2113, 3112, 2131, 3121, 1213, 1312, 412, 214, 313}.
a(8) = 49 = 128 - 79.
a(9) = 126 = 256 - 130.
The complement is counted by
A001523.
The case covering an initial interval is
A332743.
The version whose negation is not unimodal either is
A332870.
Non-unimodal permutations are
A059204.
Non-unimodal normal sequences are
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Numbers whose prime signature is not unimodal are
A332282.
Partitions whose 0-appended first differences are not unimodal are
A332284.
Non-unimodal permutations of the prime indices of n are
A332671.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)
More terms from Brian Kuehn (brk158(AT)psu.edu), Apr 20 2006
A227038
Number of (weakly) unimodal compositions of n where all parts 1, 2, ..., m appear where m is the largest part.
Original entry on oeis.org
1, 1, 1, 3, 4, 7, 13, 19, 30, 44, 71, 98, 147, 205, 294, 412, 575, 783, 1077, 1456, 1957, 2634, 3492, 4627, 6082, 7980, 10374, 13498, 17430, 22451, 28767, 36806, 46803, 59467, 75172, 94839, 119285, 149599, 187031, 233355, 290340, 360327, 446222, 551251, 679524, 835964, 1026210
Offset: 0
There are a(8) = 30 such compositions of 8:
01: [ 1 1 1 1 1 1 1 1 ]
02: [ 1 1 1 1 1 1 2 ]
03: [ 1 1 1 1 1 2 1 ]
04: [ 1 1 1 1 2 1 1 ]
05: [ 1 1 1 1 2 2 ]
06: [ 1 1 1 2 1 1 1 ]
07: [ 1 1 1 2 2 1 ]
08: [ 1 1 1 2 3 ]
09: [ 1 1 1 3 2 ]
10: [ 1 1 2 1 1 1 1 ]
11: [ 1 1 2 2 1 1 ]
12: [ 1 1 2 2 2 ]
13: [ 1 1 2 3 1 ]
14: [ 1 1 3 2 1 ]
15: [ 1 2 1 1 1 1 1 ]
16: [ 1 2 2 1 1 1 ]
17: [ 1 2 2 2 1 ]
18: [ 1 2 2 3 ]
19: [ 1 2 3 1 1 ]
20: [ 1 2 3 2 ]
21: [ 1 3 2 1 1 ]
22: [ 1 3 2 2 ]
23: [ 2 1 1 1 1 1 1 ]
24: [ 2 2 1 1 1 1 ]
25: [ 2 2 2 1 1 ]
26: [ 2 2 3 1 ]
27: [ 2 3 1 1 1 ]
28: [ 2 3 2 1 ]
29: [ 3 2 1 1 1 ]
30: [ 3 2 2 1 ]
From _Gus Wiseman_, Mar 05 2020: (Start)
The a(1) = 1 through a(6) = 13 compositions:
(1) (11) (12) (112) (122) (123)
(21) (121) (221) (132)
(111) (211) (1112) (231)
(1111) (1121) (321)
(1211) (1122)
(2111) (1221)
(11111) (2211)
(11112)
(11121)
(11211)
(12111)
(21111)
(111111)
(End)
Cf.
A001523 (unimodal compositions),
A001522 (smooth unimodal compositions with first and last part 1),
A001524 (unimodal compositions such that each up-step is by at most 1 and first part is 1).
Organizing by length rather than sum gives
A007052.
The complement is counted by
A332743.
The case of run-lengths of partitions is
A332577, with complement
A332579.
Compositions covering an initial interval are
A107429.
Non-unimodal compositions are
A115981.
-
b:= proc(n,i) option remember;
`if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
add(b(n-i*j, i+1)*(j+1), j=1..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i] == 0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 1, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 09 2015, after Alois P. Heinz *)
normQ[m_]:=m=={}||Union[m]==Range[Max[m]];
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[#]&&unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)
A332669
Number of compositions of n whose negation is not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 11, 28, 71, 165, 372, 807, 1725, 3611, 7481, 15345, 31274, 63392, 128040, 257865, 518318, 1040277, 2085714, 4178596, 8367205, 16748151, 33515214, 67056139, 134147231, 268341515, 536746350, 1073577185, 2147266984, 4294683056, 8589563136, 17179385180
Offset: 0
The a(4) = 1 through a(6) = 11 compositions:
(121) (131) (132)
(1121) (141)
(1211) (231)
(1131)
(1212)
(1221)
(1311)
(2121)
(11121)
(11211)
(12111)
The complement is counted by
A332578.
The version for run-lengths of partitions is
A332639.
The version for unsorted prime signature is
A332642.
The version for 0-appended first-differences of partitions is
A332744.
The case that is not unimodal either is
A332870.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Numbers whose unsorted prime signature is not unimodal are
A332282.
A triangle for compositions with unimodal negation is
A332670.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[-#]&]],{n,0,10}]
A332834
Number of compositions of n that are neither weakly increasing nor weakly decreasing.
Original entry on oeis.org
0, 0, 0, 0, 1, 4, 14, 36, 88, 199, 432, 914, 1900, 3896, 7926, 16036, 32311, 64944, 130308, 261166, 523040, 1046996, 2095152, 4191796, 8385466, 16773303, 33549564, 67102848, 134210298, 268426328, 536859712, 1073728142, 2147466956, 4294947014, 8589909976
Offset: 0
The a(4) = 1 through a(6) = 14 compositions:
(121) (131) (132)
(212) (141)
(1121) (213)
(1211) (231)
(312)
(1131)
(1212)
(1221)
(1311)
(2112)
(2121)
(11121)
(11211)
(12111)
The version for unsorted prime signature is
A332831.
The version for run-lengths of compositions is
A332833.
The complement appears to be counted by
A329398.
Compositions that are not unimodal are
A115981.
Partitions with weakly increasing or decreasing run-lengths are
A332745.
Compositions with weakly increasing or decreasing run-lengths are
A332835.
Compositions with weakly increasing run-lengths are
A332836.
Compositions that are neither unimodal nor is their negation are
A332870.
Cf.
A007052,
A072704,
A107429,
A328509,
A329744,
A332281,
A332284,
A332578,
A332640,
A332641,
A332643,
A332669,
A332746.
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!Or[LessEqual@@#,GreaterEqual@@#]&]],{n,0,10}]
-
a(n)={if(n==0, 0, 2^(n-1) - 2*numbpart(n) + numdiv(n))} \\ Andrew Howroyd, Dec 30 2020
A329398
Number of compositions of n with uniform Lyndon factorization and uniform co-Lyndon factorization.
Original entry on oeis.org
1, 2, 4, 7, 12, 18, 28, 40, 57, 80, 110, 148, 200, 266, 348, 457, 592, 764, 978, 1248, 1580, 2000, 2508, 3142, 3913
Offset: 1
The a(1) = 1 through a(6) = 18 compositions:
(1) (2) (3) (4) (5) (6)
(11) (12) (13) (14) (15)
(21) (22) (23) (24)
(111) (31) (32) (33)
(112) (41) (42)
(211) (113) (51)
(1111) (122) (114)
(221) (123)
(311) (222)
(1112) (321)
(2111) (411)
(11111) (1113)
(1122)
(2211)
(3111)
(11112)
(21111)
(111111)
Lyndon and co-Lyndon compositions are (both) counted by
A059966.
Lyndon compositions that are not weakly increasing are
A329141.
Lyndon compositions whose reverse is not co-Lyndon are
A329324.
Cf.
A000740,
A001037,
A001523,
A008965,
A059204,
A060223,
A211100,
A328596,
A329312,
A329318,
A329396,
A329397,
A329399,
A332578,
A332669,
A332834.
-
lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
lynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[lynfac[Drop[q,i]],Take[q,i]]][Last[Select[Range[Length[q]],lynQ[Take[q,#]]&]]]];
colynQ[q_]:=Array[Union[{RotateRight[q,#],q}]=={RotateRight[q,#],q}&,Length[q]-1,1,And];
colynfac[q_]:=If[Length[q]==0,{},Function[i,Prepend[colynfac[Drop[q,i]],Take[q,i]]]@Last[Select[Range[Length[q]],colynQ[Take[q,#]]&]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],SameQ@@Length/@lynfac[#]&&SameQ@@Length/@colynfac[#]&]],{n,10}]
A332280
Number of integer partitions of n with unimodal run-lengths.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0
The a(10) = 41 partitions (A = 10) are:
(A) (61111) (4321) (3211111)
(91) (55) (43111) (31111111)
(82) (541) (4222) (22222)
(811) (532) (42211) (222211)
(73) (5311) (421111) (2221111)
(721) (5221) (4111111) (22111111)
(7111) (52111) (3331) (211111111)
(64) (511111) (3322) (1111111111)
(631) (442) (331111)
(622) (4411) (32221)
(6211) (433) (322111)
Missing from this list is only (33211).
The complement is counted by
A332281.
Heinz numbers of these partitions are the complement of
A332282.
Taking 0-appended first-differences instead of run-lengths gives
A332283.
Unimodal normal sequences are
A007052.
Numbers whose unsorted prime signature is unimodal are
A332288.
Cf.
A007052,
A025065,
A072706,
A100883,
A115981,
A227038,
A317086,
A328509,
A329398,
A332284,
A332285,
A332294,
A332578,
A332579.
-
b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
end:
a:= n-> b(n$2, 0, true):
seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
(* Second program: *)
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
a[n_] := b[n, n, 0, True];
a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A332639
Number of integer partitions of n whose negated run-lengths are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0
The a(8) = 1 through a(13) = 10 partitions:
(3221) (4221) (5221) (4331) (4332) (5332)
(32221) (6221) (5331) (6331)
(42221) (7221) (8221)
(322211) (43221) (43321)
(52221) (53221)
(322221) (62221)
(422211) (332221)
(422221)
(522211)
(3222211)
The version for normal sequences is
A328509.
The non-negated complement is
A332280.
The non-negated version is
A332281.
The complement is counted by
A332638.
The case that is not unimodal either is
A332640.
The Heinz numbers of these partitions are
A332642.
The generalization to run-lengths of compositions is
A332727.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Compositions whose negation is not unimodal are
A332669.
Cf.
A007052,
A025065,
A100883,
A181819,
A332282,
A332578,
A332579,
A332641,
A332670,
A332671,
A332726,
A332742,
A332744.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]
A332642
Numbers whose negated unsorted prime signature is not unimodal.
Original entry on oeis.org
90, 126, 198, 234, 270, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 594, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1188, 1206, 1242, 1274, 1275, 1278, 1314, 1350, 1386
Offset: 1
The sequence of terms together with their prime indices begins:
90: {1,2,2,3}
126: {1,2,2,4}
198: {1,2,2,5}
234: {1,2,2,6}
270: {1,2,2,2,3}
306: {1,2,2,7}
342: {1,2,2,8}
350: {1,3,3,4}
378: {1,2,2,2,4}
414: {1,2,2,9}
522: {1,2,2,10}
525: {2,3,3,4}
540: {1,1,2,2,2,3}
550: {1,3,3,5}
558: {1,2,2,11}
594: {1,2,2,2,5}
630: {1,2,2,3,4}
650: {1,3,3,6}
666: {1,2,2,12}
702: {1,2,2,2,6}
For example, 630 has negated unsorted prime signature (-1,-2,-1,-1), which is not unimodal, so 630 is in the sequence.
These are the Heinz numbers of the partitions counted by
A332639.
The case that is not unimodal either is
A332643.
The version for compositions is
A332669.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Unsorted prime signature is
A124010.
Non-unimodal normal sequences are
A328509.
The number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n is
A332742(n).
Partitions whose negated 0-appended first differences are not unimodal are
A332744, with Heinz numbers
A332832.
Cf.
A007052,
A056239,
A112798,
A181821,
A242031,
A329747,
A332280,
A332281,
A332578,
A332671,
A332831.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Select[Range[2000],!unimodQ[-Last/@FactorInteger[#]]&]
A332638
Number of integer partitions of n whose negated run-lengths are unimodal.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 52, 70, 91, 118, 151, 195, 246, 310, 388, 484, 600, 743, 909, 1113, 1359, 1650, 1996, 2409, 2895, 3471, 4156, 4947, 5885, 6985, 8260, 9751, 11503, 13511, 15857, 18559, 21705, 25304, 29499, 34259, 39785, 46101, 53360, 61594
Offset: 0
The a(8) = 21 partitions:
(8) (44) (2222)
(53) (332) (22211)
(62) (422) (32111)
(71) (431) (221111)
(521) (3311) (311111)
(611) (4211) (2111111)
(5111) (41111) (11111111)
Missing from this list is only (3221).
The non-negated version is
A332280.
The complement is counted by
A332639.
The Heinz numbers of partitions not in this class are
A332642.
The case of 0-appended differences (instead of run-lengths) is
A332728.
Partitions whose run lengths are not unimodal are
A332281.
Heinz numbers of partitions with non-unimodal run-lengths are
A332282.
Compositions whose negation is unimodal are
A332578.
Compositions whose run-lengths are unimodal are
A332726.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}]
Showing 1-10 of 42 results.
Comments