cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 33 results. Next

A001523 Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0

Views

Author

Keywords

Comments

a(n) counts stacks of integer-length boards of total length n where no board overhangs the board underneath.
Number of graphical partitions on 2n nodes that contain a 1. E.g. a(3)=4 and so there are 4 graphical partitions of 6 that contain a 1, namely (111111), (21111), (2211) and (3111). Only (222) fails. - Jon Perry, Jul 25 2003
It would seem from Stanley that he regards a(0)=0 for this sequence and A001522. - Michael Somos, Feb 22 2015
In the article by Auluck is a typo in the formula (24), 2*Pi is missing in an exponent on the left side of the equation for Q(n). The correct term is exp(2*Pi*sqrt(n/3)), not just exp(sqrt(n/3)). - Vaclav Kotesovec, Jun 22 2015

Examples

			For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (121)   (113)
                    (211)   (122)
                    (1111)  (131)
                            (221)
                            (311)
                            (1112)
                            (1121)
                            (1211)
                            (2111)
                            (11111)
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.

Crossrefs

Cf. A000569. Bisections give A100505, A100506.
Row sums of A247255.
Row sums of A072704.
The strict case is A072706.
The complement is counted by A115981.
The case covering an initial interval is A227038.
The version whose negation is unimodal as well appears to be A329398.
Unimodal sequences covering an initial interval are A007052.
Non-unimodal permutations are A059204.
Non-unimodal sequences covering an initial interval are A328509.
Partitions with unimodal run-lengths are A332280.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283.
The number of unimodal permutations of the prime indices of n is A332288.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Magma
    m:=100;
    R:=PowerSeriesRing(Integers(), m);
    Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
  • Maple
    b:= proc(n, i) option remember;
          `if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
          add(b(n-i*j, i+1)*(j+1), j=0..n/i))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 26 2014
  • Mathematica
    max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
    b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
  • PARI
    {a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
    
  • Python
    def b(n, i):
        if i>n: return 0
        if n%i==0: x=1
        else: x=0
        return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
    def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
    

Formula

a(n) = Sum_{k=1..n} f(k, n-k), where f(n, k) (= A054250) = 1 if k = 0; Sum_{j=1..min(n, k)} (n-j+1)*f(j, k-j) if k > 0. - David W. Wilson, May 05 2000
a(n) = Sum_{k} A059623(n, k) for n > 0. - Henry Bottomley, Feb 01 2001
A006330(n) + a(n) = A000712(n). - Michael Somos, Jul 22 2003
G.f.: 1 + (Sum_{k>0} -(-1)^k x^(k(k+1)/2))/(Product_{k>0} (1-x^k))^2. - Michael Somos, Jul 22 2003
G.f.: 1 + Sum_{n>=1} (x^n / ( ( Product_{k=1..n-1} (1 - x^k)^2 ) * (1-x^n) ) ). - Joerg Arndt, Oct 01 2012
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. - Vaclav Kotesovec, Jun 22 2015
a(n) + A115981(n) = 2^(n - 1). - Gus Wiseman, Mar 04 2020

Extensions

More terms from David W. Wilson, May 05 2000
Definition corrected by Wolfdieter Lang, Dec 05 2018

A332578 Number of compositions of n whose negation is unimodal.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 21, 36, 57, 91, 140, 217, 323, 485, 711, 1039, 1494, 2144, 3032, 4279, 5970, 8299, 11438, 15708, 21403, 29065, 39218, 52725, 70497, 93941, 124562, 164639, 216664, 284240, 371456, 484004, 628419, 813669, 1050144, 1351757, 1734873, 2221018, 2835613
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(5) = 13 compositions:
  (1)  (2)   (3)    (4)     (5)
       (11)  (12)   (13)    (14)
             (21)   (22)    (23)
             (111)  (31)    (32)
                    (112)   (41)
                    (211)   (113)
                    (1111)  (122)
                            (212)
                            (221)
                            (311)
                            (1112)
                            (2111)
                            (11111)
		

Crossrefs

Dominated by A001523 (unimodal compositions).
The strict case is A072706.
The case that is unimodal also is A329398.
The complement is counted by A332669.
Row sums of A332670.
Unimodal normal sequences appear to be A007052.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Partitions whose run-lengths are unimodal are A332280.
Partitions whose negated run-lengths are unimodal are A332638.
Numbers whose unsorted prime signature is not unimodal are A332642.
Partitions whose negated 0-appended differences are unimodal are A332728.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[-#]&]],{n,0,10}]
    nmax = 50; CoefficientList[Series[1 + Sum[x^j*(1 - x^j)/Product[1 - x^k, {k, j, nmax - j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 01 2020 *)
  • PARI
    seq(n)={Vec(1 + sum(j=1, n, x^j/((1-x^j)*prod(k=j+1, n-j, 1 - x^k + O(x*x^(n-j)))^2)))} \\ Andrew Howroyd, Mar 01 2020

Formula

a(n) + A332669(n) = 2^(n - 1).
G.f.: 1 + Sum_{j>0} x^j/((1 - x^j)*(Product_{k>j} 1 - x^k)^2). - Andrew Howroyd, Mar 01 2020
a(n) ~ Pi * exp(2*Pi*sqrt(n/3)) / (4 * 3^(5/4) * n^(7/4)). - Vaclav Kotesovec, Mar 01 2020

Extensions

Terms a(26) and beyond from Andrew Howroyd, Mar 01 2020

A332669 Number of compositions of n whose negation is not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 11, 28, 71, 165, 372, 807, 1725, 3611, 7481, 15345, 31274, 63392, 128040, 257865, 518318, 1040277, 2085714, 4178596, 8367205, 16748151, 33515214, 67056139, 134147231, 268341515, 536746350, 1073577185, 2147266984, 4294683056, 8589563136, 17179385180
Offset: 0

Views

Author

Gus Wiseman, Feb 28 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(4) = 1 through a(6) = 11 compositions:
  (121)  (131)   (132)
         (1121)  (141)
         (1211)  (231)
                 (1131)
                 (1212)
                 (1221)
                 (1311)
                 (2121)
                 (11121)
                 (11211)
                 (12111)
		

Crossrefs

The strict case is A072707.
The complement is counted by A332578.
The version for run-lengths of partitions is A332639.
The version for unsorted prime signature is A332642.
The version for 0-appended first-differences of partitions is A332744.
The case that is not unimodal either is A332870.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers whose unsorted prime signature is not unimodal are A332282.
A triangle for compositions with unimodal negation is A332670.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[-#]&]],{n,0,10}]

Formula

a(n) + A332578(n) = 2^(n - 1) for n > 0.

Extensions

Terms a(21) and beyond from Andrew Howroyd, Mar 01 2020

A332282 Numbers whose unsorted prime signature is not unimodal.

Original entry on oeis.org

300, 588, 600, 980, 1176, 1200, 1452, 1500, 1960, 2028, 2100, 2205, 2352, 2400, 2420, 2904, 2940, 3000, 3300, 3380, 3388, 3468, 3900, 3920, 4056, 4116, 4200, 4332, 4410, 4704, 4732, 4800, 4840, 5100, 5445, 5700, 5780, 5808, 5880, 6000, 6348, 6468, 6600, 6615
Offset: 1

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

The unsorted prime signature of a positive integer (row n of A124010) is the sequence of exponents it is prime factorization.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
Also Heinz numbers of integer partitions with non-unimodal run-lengths. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   300: {1,1,2,3,3}
   588: {1,1,2,4,4}
   600: {1,1,1,2,3,3}
   980: {1,1,3,4,4}
  1176: {1,1,1,2,4,4}
  1200: {1,1,1,1,2,3,3}
  1452: {1,1,2,5,5}
  1500: {1,1,2,3,3,3}
  1960: {1,1,1,3,4,4}
  2028: {1,1,2,6,6}
  2100: {1,1,2,3,3,4}
  2205: {2,2,3,4,4}
  2352: {1,1,1,1,2,4,4}
  2400: {1,1,1,1,1,2,3,3}
  2420: {1,1,3,5,5}
  2904: {1,1,1,2,5,5}
  2940: {1,1,2,3,4,4}
  3000: {1,1,1,2,3,3,3}
  3300: {1,1,2,3,3,5}
  3380: {1,1,3,6,6}
		

Crossrefs

The opposite version is A332642.
These are the Heinz numbers of the partitions counted by A332281.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]==1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Select[Range[1000],!unimodQ[Last/@FactorInteger[#]]&]

A332281 Number of integer partitions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing followed by a weakly decreasing sequence.

Examples

			The a(10) = 1 through a(15) = 10 partitions:
  (33211)  (332111)  (44211)    (44311)     (55211)      (44322)
                     (3321111)  (333211)    (433211)     (55311)
                                (442111)    (443111)     (443211)
                                (33211111)  (3332111)    (533211)
                                            (4421111)    (552111)
                                            (332111111)  (4332111)
                                                         (4431111)
                                                         (33321111)
                                                         (44211111)
                                                         (3321111111)
		

Crossrefs

The complement is counted by A332280.
The Heinz numbers of these partitions are A332282.
The opposite version is A332639.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.

Programs

  • Maple
    b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
          j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
        end:
    a:= n-> combinat[numbpart](n)-b(n$2, 0, true):
    seq(a(n), n=0..65);  # Alois P. Heinz, Feb 20 2020
  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}]
    (* Second program: *)
    b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
    a[n_] := PartitionsP[n] - b[n, n, 0, True];
    a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

A335373 Numbers k such that the k-th composition in standard order (A066099) is not unimodal.

Original entry on oeis.org

22, 38, 44, 45, 46, 54, 70, 76, 77, 78, 86, 88, 89, 90, 91, 92, 93, 94, 102, 108, 109, 110, 118, 134, 140, 141, 142, 148, 150, 152, 153, 154, 155, 156, 157, 158, 166, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 198
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
  22: (2,1,2)
  38: (3,1,2)
  44: (2,1,3)
  45: (2,1,2,1)
  46: (2,1,1,2)
  54: (1,2,1,2)
  70: (4,1,2)
  76: (3,1,3)
  77: (3,1,2,1)
  78: (3,1,1,2)
  86: (2,2,1,2)
  88: (2,1,4)
  89: (2,1,3,1)
  90: (2,1,2,2)
  91: (2,1,2,1,1)
  92: (2,1,1,3)
  93: (2,1,1,2,1)
  94: (2,1,1,1,2)
		

Crossrefs

The dual version (non-co-unimodal compositions) is A335374.
The case that is not co-unimodal either is A335375.
Unimodal compositions are A001523.
Unimodal normal sequences are A007052.
Unimodal permutations are A011782.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences are A328509.
Numbers with non-unimodal unsorted prime signature are A332282.
Partitions with non-unimodal 0-appended first differences are A332284.
Non-unimodal permutations of the multiset of prime indices of n are A332671.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,200],!unimodQ[stc[#]]&]

A332639 Number of integer partitions of n whose negated run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 1 through a(13) = 10 partitions:
  (3221)  (4221)  (5221)   (4331)    (4332)    (5332)
                  (32221)  (6221)    (5331)    (6331)
                           (42221)   (7221)    (8221)
                           (322211)  (43221)   (43321)
                                     (52221)   (53221)
                                     (322221)  (62221)
                                     (422211)  (332221)
                                               (422221)
                                               (522211)
                                               (3222211)
		

Crossrefs

The version for normal sequences is A328509.
The non-negated complement is A332280.
The non-negated version is A332281.
The complement is counted by A332638.
The case that is not unimodal either is A332640.
The Heinz numbers of these partitions are A332642.
The generalization to run-lengths of compositions is A332727.
Unimodal compositions are A001523.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Compositions whose negation is not unimodal are A332669.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]

A332283 Number of integer partitions of n whose first differences (assuming the last part is zero) are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 30, 38, 49, 59, 73, 90, 108, 129, 159, 184, 216, 258, 298, 347, 410, 466, 538, 626, 707, 807, 931, 1043, 1181, 1351, 1506, 1691, 1924, 2132, 2382, 2688, 2971, 3300, 3704, 4073, 4500, 5021, 5510, 6065, 6740, 7362, 8078
Offset: 0

Views

Author

Gus Wiseman, Feb 19 2020

Keywords

Comments

First differs from A000041 at a(6) = 10, A000041(6) = 11.
A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (221)    (51)      (61)
                    (1111)  (311)    (222)     (322)
                            (2111)   (321)     (421)
                            (11111)  (411)     (511)
                                     (3111)    (2221)
                                     (21111)   (3211)
                                     (111111)  (4111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

Unimodal compositions are A001523.
Unimodal normal sequences appear to be A007052.
Partitions with unimodal run-lengths are A332280.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
The complement is counted by A332284.
The strict case is A332285.
Heinz numbers of partitions not in this class are A332287.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],unimodQ[Differences[Append[#,0]]]&]],{n,0,30}]

A332284 Number of integer partitions of n whose first differences (assuming the last part is zero) are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 12, 18, 28, 42, 62, 86, 123, 168, 226, 306, 411, 534, 704, 908, 1165, 1492, 1898, 2384, 3011, 3758, 4673, 5799, 7168, 8792, 10804, 13192, 16053, 19505, 23633, 28497, 34367, 41283, 49470, 59188, 70675, 84113, 100048, 118689, 140533
Offset: 0

Views

Author

Gus Wiseman, Feb 20 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(6) = 1 through a(11) = 18 partitions:
  (2211)  (331)    (431)     (441)      (541)       (551)
          (22111)  (3311)    (4311)     (3322)      (641)
                   (22211)   (32211)    (3331)      (4331)
                   (221111)  (33111)    (4411)      (4421)
                             (222111)   (33211)     (5411)
                             (2211111)  (42211)     (33221)
                                        (43111)     (33311)
                                        (222211)    (44111)
                                        (322111)    (52211)
                                        (331111)    (322211)
                                        (2221111)   (332111)
                                        (22111111)  (422111)
                                                    (431111)
                                                    (2222111)
                                                    (3221111)
                                                    (3311111)
                                                    (22211111)
                                                    (221111111)
		

Crossrefs

The complement is counted by A332283.
The strict version is A332286.
The Heinz numbers of these partitions are A332287.
Non-unimodal permutations are A059204.
Non-unimodal compositions are A115981.
Non-unimodal normal sequences appear to be A328509.
Partitions with non-unimodal run-lengths are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
    Table[Length[Select[IntegerPartitions[n],!unimodQ[Differences[Append[#,0]]]&]],{n,30}]

A332638 Number of integer partitions of n whose negated run-lengths are unimodal.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 52, 70, 91, 118, 151, 195, 246, 310, 388, 484, 600, 743, 909, 1113, 1359, 1650, 1996, 2409, 2895, 3471, 4156, 4947, 5885, 6985, 8260, 9751, 11503, 13511, 15857, 18559, 21705, 25304, 29499, 34259, 39785, 46101, 53360, 61594
Offset: 0

Views

Author

Gus Wiseman, Feb 25 2020

Keywords

Comments

A sequence of positive integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.

Examples

			The a(8) = 21 partitions:
  (8)     (44)     (2222)
  (53)    (332)    (22211)
  (62)    (422)    (32111)
  (71)    (431)    (221111)
  (521)   (3311)   (311111)
  (611)   (4211)   (2111111)
  (5111)  (41111)  (11111111)
Missing from this list is only (3221).
		

Crossrefs

The non-negated version is A332280.
The complement is counted by A332639.
The Heinz numbers of partitions not in this class are A332642.
The case of 0-appended differences (instead of run-lengths) is A332728.
Unimodal compositions are A001523.
Partitions whose run lengths are not unimodal are A332281.
Heinz numbers of partitions with non-unimodal run-lengths are A332282.
Compositions whose negation is unimodal are A332578.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[IntegerPartitions[n],unimodQ[-Length/@Split[#]]&]],{n,0,30}]
Showing 1-10 of 33 results. Next