A001523
Number of stacks, or planar partitions of n; also weakly unimodal compositions of n.
Original entry on oeis.org
1, 1, 2, 4, 8, 15, 27, 47, 79, 130, 209, 330, 512, 784, 1183, 1765, 2604, 3804, 5504, 7898, 11240, 15880, 22277, 31048, 43003, 59220, 81098, 110484, 149769, 202070, 271404, 362974, 483439, 641368, 847681, 1116325, 1464999, 1916184, 2498258, 3247088, 4207764
Offset: 0
For a(4)=8 we have the following stacks:
x
x x. .x
x x. .x x.. .x. ..x xx
x xx xx xxx xxx xxx xx xxxx
G.f. = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 15*x^5 + 27*x^6 + 47*x^7 + 79*x^8 + ...
From _Gus Wiseman_, Mar 04 2020: (Start)
The a(1) = 1 through a(5) = 15 unimodal compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(121) (113)
(211) (122)
(1111) (131)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)
(End)
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see section 2.5 on page 76.
- Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686, g(x).
- F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs (annotated scanned copy)
- H. Bottomley, Illustration of initial terms
- Shouvik Datta, Matthias R. Gaberdiel, Wei Li, and Cheng Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020.
- Sergi Elizalde and Emeric Deutsch, The degree of asymmetry of a sequence, Enum. Combinat. Applic. 2 (2022) no 1 #S2R7, U(1,z).
- Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 46.
- Rigoberto Flórez, José L. Ramírez, and Diego Villamizar, Restricted bargraphs and unimodal compositions, J. Comb. Theory, Series A, (2024) Vol. 208, Art. No. 105934.
- R. C. Rhoades, Strongly Unimodal Sequences and Mixed Mock Modular Forms
- Alan D. Sokal, The leading root of the partial theta function, arXiv preprint arXiv:1106.1003 [math.CO], 2011.
- Eric Weisstein's World of Mathematics, Unimodal Sequence
- E. M. Wright, Stacks, III, Quart. J. Math. Oxford, 23 (1972), 153-158.
The complement is counted by
A115981.
The case covering an initial interval is
A227038.
The version whose negation is unimodal as well appears to be
A329398.
Unimodal sequences covering an initial interval are
A007052.
Non-unimodal permutations are
A059204.
Non-unimodal sequences covering an initial interval are
A328509.
Partitions with unimodal run-lengths are
A332280.
Numbers whose prime signature is not unimodal are
A332282.
Partitions whose 0-appended first differences are unimodal are
A332283.
The number of unimodal permutations of the prime indices of n is
A332288.
Compositions whose negation is unimodal are
A332578.
Compositions whose run-lengths are unimodal are
A332726.
-
m:=100;
R:=PowerSeriesRing(Integers(), m);
Coefficients(R!( 1 + (&+[ x^n*(1-x^n)/(&*[(1-x^j)^2: j in [1..n]]): n in [1..m+2]]) )); // G. C. Greubel, Apr 03 2023
-
b:= proc(n, i) option remember;
`if`(i>n, 0, `if`(irem(n, i)=0, 1, 0)+
add(b(n-i*j, i+1)*(j+1), j=0..n/i))
end:
a:= n-> `if`(n=0, 1, b(n, 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 26 2014
-
max = 40; s = 1 + Sum[(-1)^(k + 1)*q^(k*(k + 1)/2), {k, 1, max}] / QPochhammer[q]^2 + O[q]^max; CoefficientList[s, q] (* Jean-François Alcover, Jan 25 2012, updated Nov 29 2015 *)
b[n_, i_] := b[n, i] = If[i>n, 0, If[Mod[n, i]==0, 1, 0] + Sum[b[n-i*j, i+1]*(j+1), {j, 0, n/i}]]; a[n_] := If[n==0, 1, b[n, 1]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Nov 24 2015, after Alois P. Heinz *)
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 04 2020 *)
-
{a(n) = if( n<1, n==0, polcoeff( sum(k=1, (sqrt(1 + 8*n) - 1)\2, -(-1)^k * x^((k + k^2)/2)) / eta(x + x * O(x^n))^2 ,n))}; /* Michael Somos, Jul 22 2003 */
-
def b(n, i):
if i>n: return 0
if n%i==0: x=1
else: x=0
return x + sum([b(n - i*j, i + 1)*(j + 1) for j in range(n//i + 1)])
def a(n): return 1 if n==0 else b(n, 1) # Indranil Ghosh, Jun 09 2017, after Maple code by Alois P. Heinz
A115981
The number of compositions of n which cannot be viewed as stacks.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 5, 17, 49, 126, 303, 694, 1536, 3312, 7009, 14619, 30164, 61732, 125568, 254246, 513048, 1032696, 2074875, 4163256, 8345605, 16717996, 33473334, 66998380, 134067959, 268233386, 536599508, 1073378850, 2147000209
Offset: 0
a(5) = 1 counting {212}.
a(6) = 5 counting {1212, 2112,2121,213,312}.
a(7) = 17 counting {11212, 12112,12121, 21211, 21121, 21112, 2122, 2212, 2113, 3112, 2131, 3121, 1213, 1312, 412, 214, 313}.
a(8) = 49 = 128 - 79.
a(9) = 126 = 256 - 130.
The complement is counted by
A001523.
The case covering an initial interval is
A332743.
The version whose negation is not unimodal either is
A332870.
Non-unimodal permutations are
A059204.
Non-unimodal normal sequences are
A328509.
Partitions with non-unimodal run-lengths are
A332281.
Numbers whose prime signature is not unimodal are
A332282.
Partitions whose 0-appended first differences are not unimodal are
A332284.
Non-unimodal permutations of the prime indices of n are
A332671.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[#]&]],{n,0,10}] (* Gus Wiseman, Mar 05 2020 *)
More terms from Brian Kuehn (brk158(AT)psu.edu), Apr 20 2006
A328509
Number of non-unimodal sequences of length n covering an initial interval of positive integers.
Original entry on oeis.org
0, 0, 0, 3, 41, 425, 4287, 45941, 541219, 7071501, 102193755, 1622448861, 28090940363, 526856206877, 10641335658891, 230283166014653, 5315654596751659, 130370766738143517, 3385534662263335179, 92801587315936355325, 2677687796232803000171, 81124824998464533181661
Offset: 0
The a(3) = 3 sequences are (2,1,2), (2,1,3), (3,1,2).
The a(4) = 41 sequences:
(1212) (2113) (2134) (2413) (3142) (3412)
(1213) (2121) (2143) (3112) (3212) (4123)
(1312) (2122) (2212) (3121) (3213) (4132)
(1323) (2123) (2213) (3122) (3214) (4213)
(1324) (2131) (2312) (3123) (3231) (4231)
(1423) (2132) (2313) (3124) (3241) (4312)
(2112) (2133) (2314) (3132) (3312)
Not requiring non-unimodality gives
A000670.
The complement is counted by
A007052.
The case where the negation is not unimodal either is
A332873.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Unimodal compositions covering an initial interval are
A227038.
Numbers whose unsorted prime signature is not unimodal are
A332282.
Covering partitions with unimodal run-lengths are
A332577.
Non-unimodal compositions covering an initial interval are
A332743.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Union@@Permutations/@allnorm[n],!unimodQ[#]&]],{n,0,5}]
-
seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - (1 - 3*x + x^2)/(1 - 4*x + 2*x^2), -(n+1)) \\ Andrew Howroyd, Jan 28 2024
A332578
Number of compositions of n whose negation is unimodal.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 21, 36, 57, 91, 140, 217, 323, 485, 711, 1039, 1494, 2144, 3032, 4279, 5970, 8299, 11438, 15708, 21403, 29065, 39218, 52725, 70497, 93941, 124562, 164639, 216664, 284240, 371456, 484004, 628419, 813669, 1050144, 1351757, 1734873, 2221018, 2835613
Offset: 0
The a(1) = 1 through a(5) = 13 compositions:
(1) (2) (3) (4) (5)
(11) (12) (13) (14)
(21) (22) (23)
(111) (31) (32)
(112) (41)
(211) (113)
(1111) (122)
(212)
(221)
(311)
(1112)
(2111)
(11111)
Dominated by
A001523 (unimodal compositions).
The case that is unimodal also is
A329398.
The complement is counted by
A332669.
Unimodal normal sequences appear to be
A007052.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Partitions whose run-lengths are unimodal are
A332280.
Partitions whose negated run-lengths are unimodal are
A332638.
Numbers whose unsorted prime signature is not unimodal are
A332642.
Partitions whose negated 0-appended differences are unimodal are
A332728.
Cf.
A011782,
A072704,
A107429,
A227038,
A332282,
A332283,
A332639,
A332741,
A332742,
A332744,
A332832,
A332870.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],unimodQ[-#]&]],{n,0,10}]
nmax = 50; CoefficientList[Series[1 + Sum[x^j*(1 - x^j)/Product[1 - x^k, {k, j, nmax - j}]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 01 2020 *)
-
seq(n)={Vec(1 + sum(j=1, n, x^j/((1-x^j)*prod(k=j+1, n-j, 1 - x^k + O(x*x^(n-j)))^2)))} \\ Andrew Howroyd, Mar 01 2020
A332669
Number of compositions of n whose negation is not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 11, 28, 71, 165, 372, 807, 1725, 3611, 7481, 15345, 31274, 63392, 128040, 257865, 518318, 1040277, 2085714, 4178596, 8367205, 16748151, 33515214, 67056139, 134147231, 268341515, 536746350, 1073577185, 2147266984, 4294683056, 8589563136, 17179385180
Offset: 0
The a(4) = 1 through a(6) = 11 compositions:
(121) (131) (132)
(1121) (141)
(1211) (231)
(1131)
(1212)
(1221)
(1311)
(2121)
(11121)
(11211)
(12111)
The complement is counted by
A332578.
The version for run-lengths of partitions is
A332639.
The version for unsorted prime signature is
A332642.
The version for 0-appended first-differences of partitions is
A332744.
The case that is not unimodal either is
A332870.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Numbers whose unsorted prime signature is not unimodal are
A332282.
A triangle for compositions with unimodal negation is
A332670.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[-#]&]],{n,0,10}]
A332280
Number of integer partitions of n with unimodal run-lengths.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 97, 129, 166, 215, 273, 352, 439, 557, 692, 865, 1066, 1325, 1614, 1986, 2413, 2940, 3546, 4302, 5152, 6207, 7409, 8862, 10523, 12545, 14814, 17562, 20690, 24397, 28615, 33645, 39297, 46009, 53609, 62504, 72581, 84412
Offset: 0
The a(10) = 41 partitions (A = 10) are:
(A) (61111) (4321) (3211111)
(91) (55) (43111) (31111111)
(82) (541) (4222) (22222)
(811) (532) (42211) (222211)
(73) (5311) (421111) (2221111)
(721) (5221) (4111111) (22111111)
(7111) (52111) (3331) (211111111)
(64) (511111) (3322) (1111111111)
(631) (442) (331111)
(622) (4411) (32221)
(6211) (433) (322111)
Missing from this list is only (33211).
The complement is counted by
A332281.
Heinz numbers of these partitions are the complement of
A332282.
Taking 0-appended first-differences instead of run-lengths gives
A332283.
Unimodal normal sequences are
A007052.
Numbers whose unsorted prime signature is unimodal are
A332288.
Cf.
A007052,
A025065,
A072706,
A100883,
A115981,
A227038,
A317086,
A328509,
A329398,
A332284,
A332285,
A332294,
A332578,
A332579.
-
b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
end:
a:= n-> b(n$2, 0, true):
seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],unimodQ[Length/@Split[#]]&]],{n,0,30}]
(* Second program: *)
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
a[n_] := b[n, n, 0, True];
a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A332281
Number of integer partitions of n whose run-lengths are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 6, 10, 16, 24, 33, 51, 70, 100, 137, 189, 250, 344, 450, 597, 778, 1019, 1302, 1690, 2142, 2734, 3448, 4360, 5432, 6823, 8453, 10495, 12941, 15968, 19529, 23964, 29166, 35525, 43054, 52173, 62861, 75842, 91013, 109208
Offset: 0
The a(10) = 1 through a(15) = 10 partitions:
(33211) (332111) (44211) (44311) (55211) (44322)
(3321111) (333211) (433211) (55311)
(442111) (443111) (443211)
(33211111) (3332111) (533211)
(4421111) (552111)
(332111111) (4332111)
(4431111)
(33321111)
(44211111)
(3321111111)
The complement is counted by
A332280.
The Heinz numbers of these partitions are
A332282.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Cf.
A007052,
A025065,
A072706,
A100883,
A332283,
A332284,
A332286,
A332287,
A332579,
A332638,
A332640,
A332641,
A332642.
-
b:= proc(n, i, m, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(b(n-i*j, i-1, j, t and j>=m),
j=1..min(`if`(t, [][], m), n/i))+b(n, i-1, m, t)))
end:
a:= n-> combinat[numbpart](n)-b(n$2, 0, true):
seq(a(n), n=0..65); # Alois P. Heinz, Feb 20 2020
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,30}]
(* Second program: *)
b[n_, i_, m_, t_] := b[n, i, m, t] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, j, t && j >= m], {j, 1, Min[If[t, Infinity, m], n/i]}] + b[n, i - 1, m, t]]];
a[n_] := PartitionsP[n] - b[n, n, 0, True];
a /@ Range[0, 65] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
A335373
Numbers k such that the k-th composition in standard order (A066099) is not unimodal.
Original entry on oeis.org
22, 38, 44, 45, 46, 54, 70, 76, 77, 78, 86, 88, 89, 90, 91, 92, 93, 94, 102, 108, 109, 110, 118, 134, 140, 141, 142, 148, 150, 152, 153, 154, 155, 156, 157, 158, 166, 172, 173, 174, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 198
Offset: 1
The sequence together with the corresponding compositions begins:
22: (2,1,2)
38: (3,1,2)
44: (2,1,3)
45: (2,1,2,1)
46: (2,1,1,2)
54: (1,2,1,2)
70: (4,1,2)
76: (3,1,3)
77: (3,1,2,1)
78: (3,1,1,2)
86: (2,2,1,2)
88: (2,1,4)
89: (2,1,3,1)
90: (2,1,2,2)
91: (2,1,2,1,1)
92: (2,1,1,3)
93: (2,1,1,2,1)
94: (2,1,1,1,2)
The dual version (non-co-unimodal compositions) is
A335374.
The case that is not co-unimodal either is
A335375.
Unimodal normal sequences are
A007052.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Non-unimodal normal sequences are
A328509.
Numbers with non-unimodal unsorted prime signature are
A332282.
Partitions with non-unimodal 0-appended first differences are
A332284.
Non-unimodal permutations of the multiset of prime indices of n are
A332671.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]];
stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
Select[Range[0,200],!unimodQ[stc[#]]&]
A332639
Number of integer partitions of n whose negated run-lengths are not unimodal.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 4, 7, 10, 17, 25, 36, 51, 75, 102, 143, 192, 259, 346, 462, 599, 786, 1014, 1309, 1670, 2133, 2686, 3402, 4258, 5325, 6623, 8226, 10134, 12504, 15328, 18779, 22878, 27870, 33762, 40916, 49349, 59457, 71394, 85679, 102394
Offset: 0
The a(8) = 1 through a(13) = 10 partitions:
(3221) (4221) (5221) (4331) (4332) (5332)
(32221) (6221) (5331) (6331)
(42221) (7221) (8221)
(322211) (43221) (43321)
(52221) (53221)
(322221) (62221)
(422211) (332221)
(422221)
(522211)
(3222211)
The version for normal sequences is
A328509.
The non-negated complement is
A332280.
The non-negated version is
A332281.
The complement is counted by
A332638.
The case that is not unimodal either is
A332640.
The Heinz numbers of these partitions are
A332642.
The generalization to run-lengths of compositions is
A332727.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Compositions whose negation is not unimodal are
A332669.
Cf.
A007052,
A025065,
A100883,
A181819,
A332282,
A332578,
A332579,
A332641,
A332670,
A332671,
A332726,
A332742,
A332744.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Table[Length[Select[IntegerPartitions[n],!unimodQ[-Length/@Split[#]]&]],{n,0,30}]
A332642
Numbers whose negated unsorted prime signature is not unimodal.
Original entry on oeis.org
90, 126, 198, 234, 270, 306, 342, 350, 378, 414, 522, 525, 540, 550, 558, 594, 630, 650, 666, 702, 738, 756, 774, 810, 825, 846, 850, 918, 950, 954, 975, 990, 1026, 1050, 1062, 1078, 1098, 1134, 1150, 1170, 1188, 1206, 1242, 1274, 1275, 1278, 1314, 1350, 1386
Offset: 1
The sequence of terms together with their prime indices begins:
90: {1,2,2,3}
126: {1,2,2,4}
198: {1,2,2,5}
234: {1,2,2,6}
270: {1,2,2,2,3}
306: {1,2,2,7}
342: {1,2,2,8}
350: {1,3,3,4}
378: {1,2,2,2,4}
414: {1,2,2,9}
522: {1,2,2,10}
525: {2,3,3,4}
540: {1,1,2,2,2,3}
550: {1,3,3,5}
558: {1,2,2,11}
594: {1,2,2,2,5}
630: {1,2,2,3,4}
650: {1,3,3,6}
666: {1,2,2,12}
702: {1,2,2,2,6}
For example, 630 has negated unsorted prime signature (-1,-2,-1,-1), which is not unimodal, so 630 is in the sequence.
These are the Heinz numbers of the partitions counted by
A332639.
The case that is not unimodal either is
A332643.
The version for compositions is
A332669.
Non-unimodal permutations are
A059204.
Non-unimodal compositions are
A115981.
Unsorted prime signature is
A124010.
Non-unimodal normal sequences are
A328509.
The number of non-unimodal negated permutations of a multiset whose multiplicities are the prime indices of n is
A332742(n).
Partitions whose negated 0-appended first differences are not unimodal are
A332744, with Heinz numbers
A332832.
Cf.
A007052,
A056239,
A112798,
A181821,
A242031,
A329747,
A332280,
A332281,
A332578,
A332671,
A332831.
-
unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
Select[Range[2000],!unimodQ[-Last/@FactorInteger[#]]&]
Showing 1-10 of 36 results.
Comments