cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072742 Lesser members of a pair of primes (p, q) such that, for some integer k, (p+q)/2 = 2^k and p > 2^(k-1).

Original entry on oeis.org

3, 5, 13, 17, 23, 61, 83, 89, 107, 139, 163, 181, 199, 229, 241, 263, 281, 347, 383, 431, 461, 467, 503, 577, 601, 619, 727, 751, 757, 769, 811, 877, 919, 997, 1009, 1097, 1187, 1193, 1217, 1259, 1277, 1307, 1319, 1367, 1409, 1433, 1439, 1487, 1553, 1619, 1637, 1697, 1787, 1823, 1889, 1997, 2027
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2002

Keywords

Comments

For each term p=a(n), the corresponding greater member is q=A072743(n).

Examples

			   n  p = a(n)  q = A072743(n)   (p+q)/2
  --  --------  --------------  ---------
   1      3            5          4 = 2^2
   2      5           11          8 = 2^3
   3     13           19         16 = 2^4
   4     17           47         32 = 2^5
   5     23           41         32 = 2^5
   6     61           67         64 = 2^6
   7     83          173        128 = 2^7
   8     89          167        128 = 2^7
   9    107          149        128 = 2^7
  10    139          373        256 = 2^8
As an irregular triangle, sequence begins:
  [3],                             (k=2)
  [5],                             (k=3)
  [13],                            (k=4)
  [17, 23],                        (k=5)
  [61],                            (k=6)
  [83, 89, 107],                   (k=7)
  [139, 163, 181, 199, 229, 241],  (k=8)
  ...
		

Crossrefs

Programs

  • PARI
    listk(k) = {my(list = List()); forprime(p=2^(k-1)+1, 2^k, my(q=2^(k+1)-p); if ((q>p) && isprime(q), listput(list, p));); Vec(list);}
    upto(k) = {my(list = List()); for (i=1, k, my(klist = listk(i)); if (#klist, for (j=1, #klist, listput(list, klist[j])));); Vec(list);}
    upto(11) \\ Michel Marcus, Jan 22 2022

Extensions

Name corrected by Jon E. Schoenfield, Jun 27 2021
More terms from Michel Marcus, Jan 22 2022

A072743 Greater members of a pair of primes (p, q) such that, for some integer k, (p+q)/2 = 2^k and p > 2^(k-1).

Original entry on oeis.org

5, 11, 19, 47, 41, 67, 173, 167, 149, 373, 349, 331, 313, 283, 271, 761, 743, 677, 641, 593, 563, 557, 521, 1471, 1447, 1429, 1321, 1297, 1291, 1279, 1237, 1171, 1129, 1051, 1039, 2999, 2909, 2903, 2879, 2837, 2819, 2789, 2777, 2729, 2687, 2663, 2657
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 08 2002

Keywords

Comments

For each term q=a(n), the corresponding lesser member is p=A072742(n). (Terms in this sequence are not listed in ascending order; rather, the corresponding primes p in A072742 are listed in ascending order.)

Crossrefs

Cf. A072742 (corresponding lesser members), A072746, A072744, A072745.

Programs

  • PARI
    listkq(k) = {my(list = List()); forprime(p=2^(k-1)+1, 2^k, my(q=2^(k+1)-p); if ((q>p) && isprime(q), listput(list, q)); ); Vec(list);}
    upto(k) = {my(list = List()); for (i=1, k, my(klist = listkq(i)); if (#klist, for (j=1, #klist, listput(list, klist[j])));); Vec(list);}
    upto(11) \\ Michel Marcus, Jan 22 2022

Extensions

Name corrected by Jon E. Schoenfield, Jun 30 2021
Showing 1-2 of 2 results.