A072750 Counting factor 7 in the first n squarefree numbers.
0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12
Offset: 1
Keywords
Examples
The first 10 squarefree numbers are: 1, 2, 3, 5, 6=2*3, 7, 10=2*5, 11, 13 and 14=2*7: 7 and 14 are divisible by 7, therefore a(10)=2.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a072750 n = a072750_list !! (n-1) a072750_list = scanl1 (+) $ map ((0 ^) . (`mod` 7)) a005117_list -- Reinhard Zumkeller, Mar 25 2013
-
Maple
N:= 1000: # to use the squarefree numbers <= N M:= map(proc(t) if numtheory:-issqrfree(t) then if t mod 7 = 0 then 1 else 0 fi fi end proc, [$1..N]): ListTools:-PartialSums(M); # Robert Israel, Aug 23 2015
-
Mathematica
With[{sf=Select[Range[200],SquareFreeQ]},Accumulate[If[Divisible[#,7],1,0]&/@sf]] (* Harvey P. Dale, Mar 21 2013 *)
-
PARI
n = 94; k = 0; bag = List(); a = vector(n); until(n == 0, k++; if (issquarefree(k), listput(bag, k); n--)); for (i=2, #bag, a[i] = a[i-1] + (bag[i] % 7 == 0)); print(a); \\ Gheorghe Coserea, Aug 23 2015
Formula
a(n) ~ n/8. - Amiram Eldar, Feb 24 2021
Extensions
Name clarified by Gheorghe Coserea, Aug 23 2015