cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 32 results. Next

A073191 Number of separate orbits/cycles to which the Catalan bijections A072796/A072797 partition each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Original entry on oeis.org

1, 1, 2, 4, 11, 31, 96, 305, 1007, 3389, 11636, 40498, 142714, 507870, 1823040, 6591885, 23989419, 87795473, 322922652, 1193058230, 4425547638, 16475756738, 61539293424, 230548633954, 866095934598, 3261868457698, 12313423931624
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073201 as row 1.

Formula

a(n) = (A000108(n)+A073190(n))/2.

A073200 Number of simple Catalan bijections of type B.

Original entry on oeis.org

0, 1, 0, 3, 1, 0, 2, 2, 1, 0, 7, 3, 3, 1, 0, 8, 4, 2, 3, 1, 0, 6, 6, 8, 2, 3, 1, 0, 4, 5, 7, 7, 2, 3, 1, 0, 5, 7, 6, 6, 8, 2, 3, 1, 0, 17, 8, 5, 8, 7, 7, 2, 2, 1, 0, 18, 9, 4, 4, 6, 8, 7, 3, 3, 1, 0, 20, 10, 22, 5, 5, 5, 8, 4, 2, 2, 1, 0, 21, 14, 21, 17, 4, 4, 6, 5, 8, 3, 3, 1, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row is a permutation of nonnegative integers induced by a Catalan bijection (constructed as explained below) acting on the parenthesizations/plane binary trees as encoded and ordered by A014486/A063171.
The construction process is akin to the constructive mapping of primitive recursive functions to N: we have two basic primitives, A069770 (row 0) and A072796 (row 1), of which the former swaps the left and the right subtree of a binary tree and the latter exchanges the positions of the two leftmost subtrees of plane general trees, unless the tree's degree is less than 2, in which case it just fixes it. From then on, the even rows are constructed recursively from any other Catalan bijection in this table, using one of the five allowed recursion types:
0 - Apply the given Catalan bijection and then recurse down to both subtrees of the new binary tree obtained. (last decimal digit of row number = 2)
1 - First recurse down to both subtrees of the old binary tree and only after that apply the given Catalan bijection. (last digit = 4)
2 - Apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree obtained. (last digit = 6)
3 - First recurse down to the right subtree of old binary tree and only after that apply the given Catalan bijection. (last digit = 8)
4 - First recurse down to the left subtree of old binary tree, after that apply the given Catalan bijection and then recurse down to the right subtree of the new binary tree. (last digit = 0)
The odd rows > 2 are compositions of the rows 0, 1, 2, 4, 6, 8, ... (i.e. either one of the primitives A069770 or A072796, or one of the recursive compositions) at the left hand side and any Catalan bijection from the same array at the right hand side. See the scheme-functions index-for-recursive-sgtb and index-for-composed-sgtb how to compute the positions of the recursive and ordinary compositions in this table.

Crossrefs

Four other tables giving the corresponding cycle-counts: A073201, counts of the fixed elements: A073202, the lengths of the largest cycles: A073203, the LCM's of all the cycles: A073204. The ordinary compositions are encoded using the N X N -> N bijection A054238 (which in turn uses the bit-interleaving function A000695).
The first 21 rows of this table:.
Row 0: A069770. Row 1: A072796. Row 2: A057163. Row 3: A073269, Row 4: A057163 (duplicate), Row 5: A073270, Row 6: A069767, Row 7: A001477 (identity perm.), Row 8: A069768, Row 9: A073280.
Row 10: A069770 (dupl.), Row 11: A072796 (dupl.), Row 12: A057511, Row 13: A073282, Row 14: A057512, Row 15: A073281, Row 16: A057509, Row 17: A073280 (dupl.), Row 18: A057510, Row 19: A073283, Row 20: A073284.
Other Catalan bijection-induced EIS-permutations which occur in this table. Only the first known occurrence is given. Involutions are marked with *, others paired with their inverse:.
Row 164: A057164*, Row 168: A057508*, Row 179: A072797*.
Row 41: A073286 - Row 69: A073287. Row 105: A073290 - Row 197: A073291. Row 416: A073288 - Row 696: A073289.
Row 261: A057501 - Row 521: A057502. Row 2618: A057503 - Row 5216: A057504. Row 2614: A057505 - Row 5212: A057506.
Row 10435: A073292 - Row ...: A073293. Row 17517: A057161 - Row ...: A057162.
For a more practical enumeration system of (some) Catalan automorphisms see table A089840 and its various "recursive derivations".

A089840 Signature permutations of non-recursive Catalan automorphisms (i.e., bijections of finite plane binary trees, with no unlimited recursion down to indefinite distances from the root), sorted according to the minimum number of opening nodes needed in their defining clauses.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 3, 3, 1, 0, 4, 2, 2, 1, 0, 5, 7, 3, 2, 1, 0, 6, 8, 4, 3, 2, 1, 0, 7, 6, 6, 5, 3, 2, 1, 0, 8, 4, 5, 4, 5, 3, 2, 1, 0, 9, 5, 7, 6, 6, 6, 3, 2, 1, 0, 10, 17, 8, 7, 4, 5, 6, 3, 2, 1, 0, 11, 18, 9, 8, 7, 4, 4, 4, 3, 2, 1, 0, 12, 20, 10, 12, 8, 7, 5, 5, 4, 3, 2, 1, 0, 13, 21, 14, 13, 12, 8, 7, 6
Offset: 0

Views

Author

Antti Karttunen, Dec 05 2003; last revised Jan 06 2009

Keywords

Comments

Each row is a permutation of natural numbers and occurs only once. The table is closed with regards to the composition of its rows (see A089839) and it contains the inverse of each (their positions are shown in A089843). The permutations in table form an enumerable subgroup of the group of all size-preserving "Catalan bijections" (bijections among finite unlabeled rooted plane binary trees). The order of each element is shown at A089842.

References

  • A. Karttunen, paper in preparation, draft available by e-mail.

Crossrefs

The first 22 rows of this table: row 0 (identity permutation): A001477, 1: A069770, 2: A072796, 3: A089850, 4: A089851, 5: A089852, 6: A089853, 7: A089854, 8: A072797, 9: A089855, 10: A089856, 11: A089857, 12: A074679, 13: A089858, 14: A073269, 15: A089859, 16: A089860, 17: A074680, 18: A089861, 19: A073270, 20: A089862, 21: A089863.
Other rows: row 83: A154125, row 169: A129611, row 183: A154126, row 251: A129612, row 253: A123503, row 258: A123499, row 264: A123500, row 3608: A129607, row 3613: A129605, row 3617: A129606, row 3655: A154121, row 3656: A154123,row 3702: A082354, row 3747: A154122, row 3748: A154124, row 3886: A082353, row 4069: A082351, row 4207: A089865, row 4253: A082352, row 4299: A089866, row 65167: A129609, row 65352: A129610, row 65518: A123495, row 65796: A123496, row 79361: A123492, row 1653002: A123695, row 1653063: A123696, row 1654023: A073281, row 1654249: A123498, row 1654694: A089864, row 1654720: A129604,row 1655089: A123497, row 1783367: A123713, row 1786785: A123714.
Tables A122200, A122201, A122202, A122203, A122204, A122283, A122284, A122285, A122286, A122287, A122288, A122289, A122290, A130400-A130403 give various "recursive derivations" of these non-recursive automorphisms. See also A089831, A073200.
Index sequences to this table, giving various subgroups or other important constructions: A153826, A153827, A153829, A153830, A123694, A153834, A153832, A153833.

A072796 Self-inverse permutation of natural numbers induced by the Catalan bijection swapping the two leftmost subtrees in the general tree context of the parenthesizations encoded by A014486. See illustrations in the comments.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 24, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 12 2002

Keywords

Comments

This bijection effects the following transformation on the unlabeled rooted plane general trees (letters A, B, C, etc. refer to arbitrary subtrees located on those vertices):
A A A B B A A B C B A C
| --> | \ / --> \ / \ | / --> \ | /
| | \./ \./ \|/ \|/ etc.
I.e., it keeps "planted" (root degree = 1) trees intact, and swaps the two leftmost toplevel subtrees of the general trees that have a root degree > 1.
On the level of underlying binary trees that general trees map to (see, e.g., 1967 paper by N. G. De Bruijn and B. J. M. Morselt, or consider lists vs. dotted pairs in Lisp programming language), this bijection effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
B C A C
\ / \ /
A x --> B x A () A ()
\ / \ / \ / --> \ /
x x x x
(a . (b . c)) -> (b . (a . c)) (a . ()) ---> (a . ())
Note that the first clause corresponds to what is called "generator pi_0" in Thompson's group V. (See also A074679, A089851 and A154121 for other related generators.)
Look at the example section to see how this will produce the given sequence of integers.
Applying this permutation recursively down the right hand side branch of the binary trees (or equivalently, along the topmost level of the general trees) produces permutations A057509 and A057510 (that occur at the same index 2 in tables A122203 and A122204) that effect "shallow rotation" on general trees and parenthesizations. Applying it recursively down the both branches of binary trees (as in pre- or postorder traversal) produces A057511 and A057512 (that occur at the same index 2 in tables A122201 and A122201) that effect "deep rotation" on general trees and parenthesizations.
For this permutation, A127301(a(n)) = A127301(n) for all n, which in turn implies A129593(a(n)) = A129593(n) for all n, likewise for all such recursively generated bijections as A057509 - A057512. Compare also to A072797.

Examples

			To obtain the signature permutation, we apply these transformations to the binary trees as encoded and ordered by A014486 and for each n, a(n) will be the position of the tree to which the n-th tree is transformed to, as follows:
.
                   one tree of one internal
  empty tree         (non-leaf) node
      x                      \/
n=    0                      1
a(n)= 0                      1               (both are always fixed)
.
the next 7 trees, with 2-3 internal nodes, in range [A014137(1), A014137(2+1)-1] = [2,8] are:
.
                          \/     \/                 \/     \/
       \/     \/         \/       \/     \/ \/     \/       \/
      \/       \/       \/       \/       \_/       \/       \/
n=     2        3        4        5        6        7        8
.
and the new shapes after swapping the two subtrees in positions marked "A" and "B" in the diagram given in the comments are:
.
                          \/               \/       \/     \/
       \/     \/         \/     \/ \/       \/     \/       \/
      \/       \/       \/       \_/       \/       \/       \/
a(n)=  2        3        4        6        5        7        5
thus we obtain the first nine terms of this sequence: 0, 1, 2, 3, 4, 6, 5, 7, 8.
		

Crossrefs

Row 2 of A089840. Row 3613 of A122203 and row 3617 of A122204.
Fixed point counts and cycle counts are given in A073190 and A073191.

Extensions

Comment section edited and Examples added by Antti Karttunen, Jan 26 2024

A083927 Inverse function of N -> N injection A057123.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 5, 0
Offset: 0

Views

Author

Antti Karttunen, May 13 2003

Keywords

Comments

a(0)=0 because A057123(0)=0, but a(n) = 0 also for those n which do not occur as values of A057123. All positive natural numbers occur here once.
If g(n) = A083927(f(A057123(n))) then we can say that Catalan bijection g embeds into Catalan bijection f in scale n:2n, using the obvious binary tree -> general tree embedding. E.g. we have: A057163 = A083927(A057164(A057123(n))), A057117 = A083927(A072088(A057123(n))), A057118 = A083927(A072089(A057123(n))), A069770 = A083927(A072796(A057123(n))), A072797 = A083927(A072797(A057123(n))).

Crossrefs

a(A057123(n)) = n for all n. Cf. A083925-A083926, A083928-A083929, A083935.

A089858 Permutation of natural numbers induced by Catalan Automorphism *A089858 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 6, 8, 7, 4, 5, 14, 15, 19, 21, 22, 16, 20, 17, 9, 10, 18, 11, 12, 13, 37, 38, 39, 40, 41, 51, 52, 56, 58, 59, 60, 62, 63, 64, 42, 43, 53, 57, 61, 44, 54, 45, 23, 24, 46, 25, 26, 27, 47, 55, 48, 28, 29, 49, 30, 31, 32, 50, 33, 34, 35, 36, 107, 108, 109, 110, 111
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node.)
.....B...C.......B...A
......\./.........\./
...A...x...-->... .x...C...............A..().........()..A..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
((a . b) . c) -> ((b . a) . c) ____ (a . ()) ---> (() . a)
See the Karttunen OEIS-Wiki link for a detailed explanation how to obtain a given integer sequence from this definition.

Crossrefs

Row 13 of A089840. Inverse of A089861. a(n) = A072797(A069770(n)) = A069770(A089852(n)) = A057163(A073270(A057163(n))).
Number of cycles: A073193. Number of fixed-points: A019590. Max. cycle size: A089422. LCM of cycle sizes: A089423 (in each range limited by A014137 and A014138).

Extensions

Further comments and constructive implementation of Scheme-function (*A089858) added by Antti Karttunen, Jun 04 2011

A089861 Permutation of natural numbers induced by Catalan Automorphism *A089861 acting on the binary trees/parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 3, 2, 7, 8, 4, 6, 5, 17, 18, 20, 21, 22, 9, 10, 14, 16, 19, 11, 15, 12, 13, 45, 46, 48, 49, 50, 54, 55, 57, 58, 59, 61, 62, 63, 64, 23, 24, 25, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 32, 33, 41, 34, 35, 36, 129, 130, 132, 133, 134, 138
Offset: 0

Views

Author

Antti Karttunen, Nov 29 2003

Keywords

Comments

This automorphism effects the following transformation on the unlabeled rooted plane binary trees (letters A, B, C refer to arbitrary subtrees located on those nodes and () stands for an implied terminal node).
.A...B...............A...C
..\./.................\./
...x...C...-->.....B...x...............()..A.........A..()..
....\./.............\./.................\./....-->....\./...
.....x...............x...................x.............x....
((a . b) . c) --> (b . (a . c)) __ (() . a) ----> (a . ())
See the Karttunen OEIS-Wiki link for a detailed explanation of how to obtain a given integer sequence from this definition.

Crossrefs

Row 18 of A089840. Inverse of A089858. a(n) = A089852(A069770(n)) = A069770(A072797(n)) = A057163(A073269(A057163(n))).
Number of cycles: A073193. Number of fixed-points: A019590. Max. cycle size: A089422. LCM of cycle sizes: A089423 (in each range limited by A014137 and A014138).

Extensions

A graphical description and constructive version of Scheme-implementation added by Antti Karttunen, Jun 04 2011

A082339 Permutation of natural numbers induced by the Catalan bijection gma082339 acting on the parenthesizations encoded by A014486/A063171.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 11, 13, 17, 18, 16, 14, 15, 20, 19, 21, 22, 23, 24, 26, 25, 27, 31, 32, 30, 28, 29, 34, 33, 35, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 40, 39, 41, 54, 55, 53, 51, 52, 57, 56, 58, 59, 61, 60, 62, 63, 64, 65, 66, 68, 67, 69
Offset: 0

Views

Author

Antti Karttunen, Apr 17 2003

Keywords

Crossrefs

Inverse of A082340. Occurs in A073200 as row 1796. Cf. also A072797, A082337-A082341.
Max. cycle size and LCMs of cycle sizes: A016116 (to be checked). (In range [A014137(n-1)..A014138(n-1)] of this permutation, possibly shifted one term left or right).

A129593 Prime-factorization encoded partition codes for the Łukasiewicz-words in A071153.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 9, 9, 5, 16, 27, 27, 6, 25, 27, 25, 6, 27, 25, 25, 25, 25, 7, 32, 81, 81, 18, 125, 81, 125, 18, 18, 15, 125, 15, 15, 49, 81, 125, 125, 15, 49, 18, 15, 18, 81, 125, 15, 125, 15, 49, 125, 49, 15, 125, 49, 15, 15, 125, 49, 49, 49, 49, 49, 11, 64, 243, 243, 54
Offset: 0

Views

Author

Antti Karttunen, May 01 2007

Keywords

Comments

If the signature-permutation of a Catalan automorphism SP satisfies the condition A129593(SP(n)) = A129593(n) for all n, then it is called a Łukasiewicz-word permuting automorphism. In addition to all the automorphisms whose signature permutation satisfies the more restricted condition A127301(SP(n)) = A127301(n) for all n, this includes also certain automorphisms like *A072797 that do not preserve the non-oriented form of the general tree. A000041(n) distinct values occur in each range [A014137(n-1)..A014138(n-1)]. All natural numbers occur. Cf. A129599.

Examples

			The terms A071153(5..7) are 201, 210 and 120. After discarding zero and sorting, each produces partition 1+2. Converting it to prime-exponents like explained in A129595, we get 2^0 * 3^2 = 9, thus a(5) = a(6) = a(7) = 9.
		

Crossrefs

a(n) = a(A072797(n)).
Variant: A129599. To be computed: the position of the first and the last occurrence of n, the number of occurrences of each n.

Formula

Construction: remove zeros from the Łukasiewicz-word of a general plane tree encoded by A014486(n) (i.e. A071153(n)), sort the numbers into ascending order and interpreting it as a partition of a natural number, encode it in the manner explained in A129595.

A069775 Permutation of natural numbers induced by the automorphism gma069775! acting on the parenthesizations encoded by A014486.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 11, 12, 13, 17, 18, 16, 14, 15, 21, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 45, 46, 48, 49, 50, 44, 47, 42, 37, 38, 43, 39, 40, 41, 58, 59, 56, 51, 52, 57, 53, 54, 55, 63, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0

Views

Author

Antti Karttunen, Apr 16 2002

Keywords

Crossrefs

Inverse of A069776. a(n) = A057163(A057509(A057163(n))) = A069773(A069770(n)). Cf. also A069787, A072797.
Number of cycles: A003239. Number of fixed points: A034731. Max. cycle size: A028310. LCM of cycle sizes: A003418. (In range [A014137(n-1)..A014138(n-1)] of this permutation, possibly shifted one term left or right).
Showing 1-10 of 32 results. Next