cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A072807 n-th prime prime(n) written in base (prime(n) (mod prime(n-1))).

Original entry on oeis.org

111, 101, 111, 23, 1101, 101, 10011, 113, 45, 11111, 101, 221, 101011, 233, 125, 135, 111101, 151, 1013, 1001001, 211, 1103, 225, 141, 1211, 1100111, 1223, 1101101, 1301, 91, 2003, 345, 10001011, 149, 10010111, 421, 431, 2213, 445, 455, 10110101
Offset: 2

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			Eventually non-decimal digit symbols appear, as in case of 307=17d, in base 14 = 307 mod 293.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, p, l;
          p:= ithprime(n); b:= irem(p, prevprime(p));
          if b=1 then l:= 1$p
        else l:= ""; while p>0 do l:= irem(p, b, 'p'), l od
          fi; parse(cat(l))
        end:
    seq(a(n), n=2..62);  # Alois P. Heinz, Sep 05 2019
  • Mathematica
    Table[BaseForm[Prime[w], Mod[Prime[w], Prime[w-1]]], {w, 2, 128}]
    Join[{111},FromDigits[IntegerDigits[#[[2]],Mod[#[[2]],#[[1]]]]]&/@ Partition[ Prime[Range[2,50]],2,1]] (* Harvey P. Dale, Jul 03 2021 *)
  • PARI
    a(n) = {my(p=prime(n), q=prime(n-1)); if ((p % q) != 1, d=digits(p, p % q); if (#select(x->(x>9), d), 0, fromdigits(d, 10)), fromdigits(vector(p, k, 1), 10));} \\ Michel Marcus, Sep 05 2019

Extensions

Name corrected by Michel Marcus, Sep 05 2019

A072804 n-th prime prime(n) written in base (prime(n) (mod 4)).

Original entry on oeis.org

10, 10, 11111, 21, 102, 1111111111111, 11111111111111111, 201, 212, 11111111111111111111111111111, 1011, 1111111111111111111111111111111111111, 11111111111111111111111111111111111111111, 1121, 1202, 11111111111111111111111111111111111111111111111111111, 2012
Offset: 1

Views

Author

Labos Elemer, Jul 12 2002

Keywords

Examples

			4k+1 primes are written in base 1, while 4k+3 primes are in base 3.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits@ If[#2 == 1, ConstantArray[1, #1], IntegerDigits[#1, #2]] & @@ {#, Mod[#, 4]} &@ Prime@ w, {w, 17}] (* Michael De Vlieger, Sep 04 2019 *)
  • PARI
    a(n) = {my(p=prime(n)); if ((p % 4) != 1, fromdigits(digits(p, p % 4), 10), fromdigits(vector(p, k, 1), 10));} \\ Michel Marcus, Sep 04 2019
Showing 1-2 of 2 results.