A072822 The terms of A073215 (sums of two powers of 23) divided by 2.
1, 12, 23, 265, 276, 529, 6084, 6095, 6348, 12167, 139921, 139932, 140185, 146004, 279841, 3218172, 3218183, 3218436, 3224255, 3358092, 6436343, 74017945, 74017956, 74018209, 74024028, 74157865, 77236116, 148035889, 1702412724
Offset: 0
Examples
T(2,0) = 265 = (23^2 + 23^0) / 2. Triangle begins: 1; 12, 23; 265, 276, 529; 6084, 6095, 6348, 12167; 139921, 139932, 140185, 146004, 279841; 3218172, 3218183, 3218436, 3224255, 3358092, 6436343; ...
Crossrefs
Cf. A073215.
Programs
-
Mathematica
Union[#/2&/@(Total/@Tuples[23^Range[0,7],{2}])] (* Harvey P. Dale, Apr 21 2011 *)
-
Python
from math import isqrt def A072822(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1))>>1 # Chai Wah Wu, Apr 09 2025
Formula
T(n,m) = (23^n + 23^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.
Extensions
Offset changed by Alois P. Heinz, Apr 09 2025