cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072841 Numbers k such that the digits of k^2 are exactly the same (albeit in different order) as the digits of (k+1)^2.

Original entry on oeis.org

13, 157, 913, 4513, 14647, 19201, 19291, 19813, 20191, 27778, 31828, 34825, 37471, 39586, 40297, 50386, 53536, 53842, 54913, 62986, 64021, 70267, 76513, 78241, 82597, 89356, 98347, 100147, 100597, 103909, 106528, 111847, 115024, 117391, 125986, 128047
Offset: 1

Views

Author

Harvey P. Dale, Aug 09 2002

Keywords

Comments

All terms are of form 9k+4. - Zak Seidov, Jun 04 2010
All numbers of the form 5500*10^k - 87, k >= 1 are terms, i.e., 54 followed by k 9's followed by a 13: 54913, 549913, 5499913, etc. - Enrico Munini, Feb 21 2023

Examples

			913 is included because 913^2 = 833569, 914^2 = 835396 and both 833569 and 835396 contain exactly the same set of digits.
		

References

  • Boris A. Kordemsky, The Moscow Puzzles, p. 165 (1972).

Programs

  • Mathematica
    okQ[n_] := Module[{idn = IntegerDigits[n^2]}, Sort[idn] == Sort[ IntegerDigits[ (n + 1)^2]]]; Select[Range[100000], okQ]
    SequencePosition[Table[FromDigits[Sort[IntegerDigits[n^2]]],{n,130000}],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 09 2020 *)
  • PARI
    isok(n) = vecsort(digits(n^2)) == vecsort(digits((n+1)^2)); \\ Michel Marcus, Sep 30 2016

Extensions

Terms from 100147 onward from N. J. A. Sloane, May 24 2010