cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072883 Least k >= 1 such that k^n + n is prime, or 0 if no such k exists.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 16, 3, 2, 1, 32, 1, 118, 417, 2, 1, 14, 1, 22, 81, 76, 1, 12, 55, 28, 15, 0, 1, 110, 1, 232, 117, 230, 3, 12, 1, 4, 375, 2, 1, 48, 1, 46, 15, 218, 1, 78, 7, 100, 993, 28, 1, 624, 13, 252, 183, 226, 1, 104, 1, 1348, 777, 1294, 0, 1806, 1, 306, 1815, 10, 1, 30, 1
Offset: 1

Views

Author

Benoit Cloitre, Aug 13 2002

Keywords

Comments

Because the polynomial x^n + n is reducible for n in A097792, a(27) and a(64) are 0. Although x^4 + 4 is reducible, the factor x^2 - 2x + 2 is 1 for x=1. - T. D. Noe, Aug 24 2004

Crossrefs

Cf. A097792 (n such that x^n + n is reducible).

Programs

  • Mathematica
    Table[If[MemberQ[{27, 64}, n], 0, k=1; While[ !PrimeQ[k^n+n], k++ ]; k], {n, 100}]
    (* Second program: *)
    okQ[n_] := n == 4 || IrreduciblePolynomialQ[x^n + n];
    a[n_] := If[!okQ[n], 0, s = 1; While[!PrimeQ[s^n + n], s++]; s];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 15 2019, from PARI *)
  • PARI
    isok(n) = (n==4) || polisirreducible(x^n+n);
    a(n) = if (!isok(n), 0, my(s=1); while(!isprime(s^n+n), s++); s); \\ adapted by Michel Marcus, Jan 15 2019
    
  • PARI
    apply( {A072883(n)=if(is_A097792(n), n==4, for(k=1, oo, ispseudoprime(k^n+n) && return(k)))}, [1..99]) \\ M. F. Hasler, Jul 07 2024
    
  • Python
    from sympy import isprime
    def A072883(n):
        if is_A097792(n): return int(n==4)
        for k in range(1,99**9):
            if isprime(k**n+n): return k # M. F. Hasler, Jul 07 2024

Extensions

More terms from T. D. Noe, Aug 24 2004