A072902 Nonprime numbers m such that the discriminant of the quadratic field Q(sqrt(m)) equals m.
1, 8, 12, 21, 24, 28, 33, 40, 44, 56, 57, 60, 65, 69, 76, 77, 85, 88, 92, 93, 104, 105, 120, 124, 129, 133, 136, 140, 141, 145, 152, 156, 161, 165, 168, 172, 177, 184, 185, 188, 201, 204, 205, 209, 213, 217, 220, 221, 232, 236, 237, 248, 249, 253, 264, 265, 268
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
FundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[ SquareFreeQ[d] && d != 1]]; m = d/4; Return[ SquareFreeQ[m] && Mod[m, 4] > 1]]; Join[{1}, Select[ Range[270], !PrimeQ[#] && FundamentalDiscriminantQ[#]& ]] (* Jean-François Alcover, Jun 05 2012, after Eric W. Weisstein *)
-
PARI
isok(m) = !isprime(m) && (quaddisc(m) == m); \\ Michel Marcus, Feb 18 2021
Formula
a(n) appears to be asymptotic to C*n with C = 3.91... .
Comments