A072911 Number of "phi-divisors" of n.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 2, 1
Offset: 1
References
- József Sándor, On an exponential totient function, Studia Univ. Babes-Bolyai, Math., 41 (1996), 91-94. [Laszlo Toth, Oct 06 2008]
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- László Tóth, On certain arithmetic functions involving exponential divisors, Annales Univ. Sci. Budapest., Sect. Comp., 27 (2004), 285-294; arXiv:math/0610274 [math.NT], 2006-2009. [From _Laszlo Toth_, Oct 06 2008]
Programs
-
Haskell
a072911 = product . map (a000010 . fromIntegral) . a124010_row -- Reinhard Zumkeller, Mar 13 2012
-
Maple
A072911 := proc(n) local a, p; a := 1 ; for p in ifactors(n)[2] do a := a*numtheory[phi](op(2, p)) ; od: a ; end: seq(A072911(n),n=1..100) ; # R. J. Mathar, Sep 25 2008
-
Mathematica
a[n_] := Times @@ EulerPhi[FactorInteger[n][[All, 2]]]; Array[a, 105] (* Jean-François Alcover, Nov 16 2017 *)
Formula
If n = Product p(i)^r(i) then a(n) = Product (phi(r(i))), where phi(k) is the Euler totient function of k, cf. A000010.
Sum_{k=1..n} a(k) ~ c_1 * n + c_2 * n^(1/3) + O(n^(1/5+eps)), where c_1 = A327838 (Tóth, 2004). - Amiram Eldar, Oct 30 2022
Extensions
More terms from R. J. Mathar, Sep 25 2008
Comments