A072917 a(n) = p(n) - phi(n), where p(n) is the least prime greater than phi(n).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 3, 1, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 3, 5, 1, 1, 1, 1, 3, 5, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 5, 5, 3, 1, 5, 3, 5, 1, 5, 1, 1, 1, 1, 1, 5, 1, 5, 5, 1, 1, 5, 3, 1, 3, 1, 1, 5, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1
Offset: 1
Examples
phi(15) = 8 and the least prime > 8 is 11; hence a(15) = 11 - 8 = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := Module[{r, p}, p = EulerPhi[n]; r = p + 1; While[ ! PrimeQ[r], r = r + 1]; r - p]; Table[a[i], {i, 1, 100}] lpg[n_]:=Module[{ep=EulerPhi[n]},NextPrime[ep]-ep]; Array[lpg,200] (* Harvey P. Dale, May 29 2017 *)
-
PARI
A072917(n) = (nextprime(1+eulerphi(n)) - eulerphi(n)); \\ Antti Karttunen, Aug 22 2017