cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A072985 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n >= 2, nu(n) = b*nu(n-1) + lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,3), where (n)_q = (1+q+...+q^(n-1)) and q is a root of unity.

Original entry on oeis.org

1, 2, 7, 6, 21, 18, 63, 54, 189, 162, 567, 486, 1701, 1458, 5103, 4374, 15309, 13122, 45927, 39366, 137781, 118098, 413343, 354294, 1240029, 1062882, 3720087, 3188646, 11160261, 9565938, 33480783, 28697814, 100442349, 86093442
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a sequence of weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n >= 2, f(n) = 2*f(n-1) + 3*f(n-2).

Examples

			nu(0) = 1;
nu(1) = 2;
nu(2) = 7;
nu(3) = 20 + 6q;
nu(4) = 61 + 33q + 21q^2;
nu(5) = 182 + 144q + 120q^2 + 78q^3 + 18q^4;
nu(6) = 547 + 570q + 585q^2 + 501q^3 + 381q^4 + 162q^5 + 63q^6; ...
The coefficients of the highest power of q give this sequence.
		

Crossrefs

Cf. A014983.

Programs

  • Magma
    [1] cat [(1/6)*(13+(-1)^n)*3^Floor(n/2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
    
  • Mathematica
    CoefficientList[Series[-(1 + 2 x + 4 x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *)
    Join[{1}, LinearRecurrence[{0, 3}, {2, 7}, 33]] (* Jean-François Alcover, Sep 23 2017 *)
  • PARI
    x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-3*x^2)) \\ G. C. Greubel, May 26 2018

Formula

For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2) = b^2+lambda and for n >= 3, t(n) = lambda*t(n-2).
G.f.: (1 + 2*x + 4*x^2)/(1-3*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 3*a(n-2) for n>2. - Ralf Stephan, Jul 19 2013
a(n) = (1/6)*(13 + (-1)^n)*3^floor(n/2) for n>0. - Ralf Stephan, Jul 19 2013

Extensions

More terms from R. J. Mathar, Dec 05 2007