A072985 Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n >= 2, nu(n) = b*nu(n-1) + lambda*(n-1)_q*nu(n-2) with (b,lambda)=(2,3), where (n)_q = (1+q+...+q^(n-1)) and q is a root of unity.
1, 2, 7, 6, 21, 18, 63, 54, 189, 162, 567, 486, 1701, 1458, 5103, 4374, 15309, 13122, 45927, 39366, 137781, 118098, 413343, 354294, 1240029, 1062882, 3720087, 3188646, 11160261, 9565938, 33480783, 28697814, 100442349, 86093442
Offset: 0
Examples
nu(0) = 1; nu(1) = 2; nu(2) = 7; nu(3) = 20 + 6q; nu(4) = 61 + 33q + 21q^2; nu(5) = 182 + 144q + 120q^2 + 78q^3 + 18q^4; nu(6) = 547 + 570q + 585q^2 + 501q^3 + 381q^4 + 162q^5 + 63q^6; ... The coefficients of the highest power of q give this sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
- Index entries for linear recurrences with constant coefficients, signature (0,3).
Crossrefs
Cf. A014983.
Programs
-
Magma
[1] cat [(1/6)*(13+(-1)^n)*3^Floor(n/2): n in [1..40]]; // Vincenzo Librandi, Jul 20 2013
-
Mathematica
CoefficientList[Series[-(1 + 2 x + 4 x^2) / (-1 + 3 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 20 2013 *) Join[{1}, LinearRecurrence[{0, 3}, {2, 7}, 33]] (* Jean-François Alcover, Sep 23 2017 *)
-
PARI
x='x+O('x^30); Vec((1+2*x+4*x^2)/(1-3*x^2)) \\ G. C. Greubel, May 26 2018
Formula
For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2) = b^2+lambda and for n >= 3, t(n) = lambda*t(n-2).
G.f.: (1 + 2*x + 4*x^2)/(1-3*x^2). - R. J. Mathar, Dec 05 2007
a(n) = 3*a(n-2) for n>2. - Ralf Stephan, Jul 19 2013
a(n) = (1/6)*(13 + (-1)^n)*3^floor(n/2) for n>0. - Ralf Stephan, Jul 19 2013
Extensions
More terms from R. J. Mathar, Dec 05 2007
Comments