cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073010 Decimal expansion of Pi/sqrt(27).

Original entry on oeis.org

6, 0, 4, 5, 9, 9, 7, 8, 8, 0, 7, 8, 0, 7, 2, 6, 1, 6, 8, 6, 4, 6, 9, 2, 7, 5, 2, 5, 4, 7, 3, 8, 5, 2, 4, 4, 0, 9, 4, 6, 8, 8, 7, 4, 9, 3, 6, 4, 2, 4, 6, 8, 5, 8, 5, 2, 3, 2, 9, 4, 9, 7, 8, 4, 6, 2, 7, 0, 7, 7, 2, 7, 0, 4, 2, 1, 1, 7, 9, 6, 1, 2, 2, 8, 0, 4, 1, 6, 6, 2, 7, 3, 7, 3, 5, 3, 3, 8, 9, 6, 1, 8, 7, 4, 0
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

Original name: Decimal expansion of Sum_{n>0} 1/(n*binomial(2*n,n)).
This appears to be Pi/sqrt(27). See A111510. - Marco Matosic, Feb 27 2008
This is Pi*sqrt(3)/9 = A019676*A002194, see eq. (12) in Lehmer link. - R. J. Mathar, Mar 04 2009
Value of the Dirichlet L-series of the non-principal character modulo m=3 (A102283) at s=1. - R. J. Mathar, Oct 03 2011
Construct the largest possible circle inside a given equilateral triangle. This constant is the ratio of the area of the circle to the area of the triangle (A245670 is analogous square in triangle). - Rick L. Shepherd, Jul 29 2014

Examples

			0.60459978807807261686469275254738524409468...
		

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (81), page 16.

Crossrefs

Programs

  • Magma
    R:=RealField(106); SetDefaultRealField(R); n:=Pi(R)/Sqrt(27); Reverse(Intseq(Floor(10^105*n))); // Bruno Berselli, Mar 12 2018
  • Mathematica
    RealDigits[ N [Sum[1/(n*Binomial[2n, n]), {n, 1, Infinity}], 110]] [[1]]
    RealDigits[Pi/(3*Sqrt[3]), 10, 105][[1]] (* T. D. Noe, Sep 11 2013 *)
  • PARI
    Pi/sqrt(27) \\ Charles R Greathouse IV, Sep 11 2013
    

Formula

-Pi/(3*sqrt(3)) = Sum_{n>=0} (1/(6*n+1) - 2/(6*n+2) - 3/(6*n+3) - 1/(6*n+4) + 2/(6*n+5) + 3/(6*n+6)). - Mats Granvik, Sep 08 2013
Equals Integral_{0..oo} 2*x/((x^2+1)*(x^4+x^2+1)) dx. - Jean-François Alcover, Sep 10 2013
From Peter Bala, Feb 16 2015: (Start)
Pi/sqrt(27) = Sum_{n >= 0} 1/((3*n + 1)*(3*n + 2)) = 1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ....
Continued fraction: 1/(1 + 1^2/(1 + 2^2/(2 + 4^2/(1 + 5^2/(2 + ... + (3*n + 1)^2/(1 + (3*n + 2)^2/(2 + ... ))))))).
Pi/sqrt(27) = Integral_{t = 0..1/2} 1/(t^2 - t + 1) dt = Integral_{t = 0..1/2} (1 + t - t^3 - t^4)/(1 - t^6) dt.
Pi/sqrt(27) = (1/4)*Sum_{n >= 0} (-1/8)^n * (9*n + 5)/((3*n + 1)*(3*n + 2)).
BBP-type formulas:
Pi/sqrt(27) = Sum_{n >= 0} (1/64)^(n+1)*( 32/(6*n + 1) + 16/(6*n + 2) - 4/(6*n + 4) - 2/(6*n + 5) ) follows from the above integral representation.
Pi/sqrt(27) = Sum_{n >= 0} (-1)^n*(1/27)^(n+1)*( 9/(6*n + 1) + 9/(6*n + 2) + 6/(6*n + 3) + 3/(6*n + 4) + 1/(6*n + 5) ) follows from the result: Pi/3 = Integral_{t = 0..1/sqrt(3)} 1/(1 - sqrt(3)*t + t^2) dt. (End)
Equals Integral_{x=0..oo} x*I_0(x)*K_0(x)^2 dx over a triple product of modified Bessel functions. - R. J. Mathar, Oct 14 2015
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..oo} 1/(exp(x) + exp(-x) + 1) dx.
Equals Integral_{x=0..oo} 1/(1 + x + x^2 + x^3 + x^4 + x^5) dx. (End)
Equals (3*S - 4)/8, where S = A248682. - Peter Luschny, Jul 22 2022
Equals Product_{p prime} (1 - Kronecker(-3, p)/p)^(-1) = Product_{p prime != 3} (1 + (-1)^(p mod 3)/p)^(-1). - Amiram Eldar, Nov 06 2023
From Peter Bala, Dec 09 2023: (Start)
Pi/sqrt(27) = Sum_{n >= 1} 1/(n*binomial(2*n,n)) = (1/6)*Sum_{n >= 1} 3^n/(n*binomial(2*n,n)) (see Lehmer, equation 12, and also p. 456).
Pi/sqrt(27) = (1/2)*Sum_{n >= 0} 1/((2*n + 1)*binomial(2*n,n)).
Pi/sqrt(27) = (9/4)*Sum_{n >= 3} (n - 1)*(n - 2)/binomial(2*n,n). (End)
Equals integral_{x=0..oo} 1/(1-x^3) dx [Nahin]. - R. J. Mathar, May 16 2024
From Peter Bala, Mar 05 2025: (Start)
Equals 2*Integral_{x = 0..1} 1/(3 + x^2) dx = Integral_{x = 0..1} (4 - x)/(sqrt(x)*(12 + x*(1 - x))) dx.
Equals Sum_{n >= 1} (-1/3)^n * (3 - 14*n)/(n*(2*n-1)*binomial(4*n, 2*n)). The series terms are O(7*sqrt(2*Pi/n)/48^n). (End)
Equals Integral_{x=0..oo} (x^3)/(x^6 + 1) dx. - Kritsada Moomuang, Jun 04 2025