cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073011 Decimal expansion of Lehmer's constant (also known as the Salem constant).

Original entry on oeis.org

1, 1, 7, 6, 2, 8, 0, 8, 1, 8, 2, 5, 9, 9, 1, 7, 5, 0, 6, 5, 4, 4, 0, 7, 0, 3, 3, 8, 4, 7, 4, 0, 3, 5, 0, 5, 0, 6, 9, 3, 4, 1, 5, 8, 0, 6, 5, 6, 4, 6, 9, 5, 2, 5, 9, 8, 3, 0, 1, 0, 6, 3, 4, 7, 0, 2, 9, 6, 8, 8, 3, 7, 6, 5, 4, 8, 5, 4, 9, 9, 6, 2, 0, 9, 6, 8, 3, 0, 1, 1, 5, 5, 8, 1, 8, 1, 5, 3, 9, 4, 6, 5, 9, 2, 0
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

This number is algebraic of degree 10.
The Salem constant given here is the smallest known value of Mahler's measure M(f)=abs(a_d)*Product_{k=1..d}max(1,abs(b_k)) of a polynomial f(x)=Sum_{k=0..d}(a_k*x^k)=a_d*Product_{k=1..d}(x-b_k). The minimum occurs for Lehmer's polynomial (coefficients A070178) L(x)=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1 with M(L)=1.1762808... - Hugo Pfoertner, Mar 12 2006
The Salem numbers were named after the Greek mathematician Raphaël Salem (1898-1963). - Amiram Eldar, May 01 2021

Examples

			1.17628081825991750654407033847403505069341580656469...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.30, p. 193.

Crossrefs

Cf. A070178 (Coefficients of Lehmer's polynomial).

Programs

  • Mathematica
    RealDigits[x/.FindRoot[x^10+x^9-Total[x^Range[3,7]]+x+1==0,{x,1,2}, WorkingPrecision->120]][[1]] (* Harvey P. Dale, Sep 08 2011 *)
    Root[ x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1, 2] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Mar 05 2013 *)
  • PARI
    default(realprecision,250); L(x)=x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1; solve(x=1.1,1.2,L(x))
    
  • PARI
    polrootsreal(Pol([1, 1, 0, -1, -1, -1, -1, -1, 0, 1, 1]))[2] \\ Charles R Greathouse IV, Sep 03 2014

Formula

This is the largest real root of the polynomial x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1.

Extensions

Edited by N. J. A. Sloane, May 01 2012