A073031 Number of ways of making change for n cents using coins of sizes 1, 2, 5, 10 cents, when order matters.
1, 1, 2, 3, 5, 9, 15, 26, 44, 75, 129, 220, 377, 644, 1101, 1883, 3219, 5505, 9412, 16093, 27517, 47049, 80448, 137553, 235195, 402148, 687611, 1175712, 2010288, 3437288, 5877241, 10049189, 17182590, 29379620, 50234693, 85893702
Offset: 0
Examples
a(4)=5 because 4 = 1 + 1 + 1 + 1 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 = 2 + 2: five possible exchange. a(15) = a(14) + a(13) + a(10) + a(5) = 1883 = 1101 + 644 + 129 + 9.
References
- Peter Boros (borospet(AT)freemail.hu): Lectures on Fibonacci's World at the SOTERIA Foundation, 1999.
- P. Henrici, Applied and Computational Complex Analysis. Wiley, NY, 3 vols., 1974-1986. (Vol. 1, p. 580.)
Links
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,0,1,0,0,0,0,1).
Crossrefs
Cf. A079971.
Programs
-
Maple
a:= n-> (Matrix(10, (i,j)-> if i+1=j or j=1 and member (i,[1, 2, 5, 10]) then 1 else 0 fi)^n)[1, 1]: seq(a(n), n=0..35); # Alois P. Heinz, Oct 07 2008
-
Mathematica
LinearRecurrence[{1, 1, 0, 0, 1, 0, 0, 0, 0, 1}, {1, 1, 2, 3, 5, 9, 15, 26, 44, 75}, 36] (* Jean-François Alcover, Jan 25 2025 *)
Formula
a(n) = a(n-1) + a(n-2) + a(n-5) + a(n-10), a(0)=1.
G.f.: 1/(1 - x - x^2 - x^5 - x^10). - Franklin T. Adams-Watters, Oct 24 2006
With offset 1, the INVERT transform of (1 + x + x^4 + x^9). - Gary W. Adamson, Apr 04 2017