cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A046758 Equidigital numbers.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 105, 106, 107, 109, 111, 112, 113, 115, 118, 119, 121, 122, 123, 127, 129, 131, 133, 134, 135, 137, 139
Offset: 1

Views

Author

Keywords

Comments

Write n as product of primes raised to powers, let D(n) = A050252 = total number of digits in product representation (number of digits in all the primes plus number of digits in all the exponents that are greater than 1) and l(n) = number of digits in n; sequence gives n such that D(n)=l(n).
The term "equidigital number" was coined by Recamán (1995). - Amiram Eldar, Mar 10 2024

Examples

			For n = 125 = 5^3, l(n) = 3 but D(n) = 2. So 125 is not a member of this sequence.
		

References

  • Bernardo Recamán Santos, Equidigital representation: problem 2204, J. Rec. Math., Vol. 27, No. 1 (1995), pp. 58-59.

Crossrefs

Programs

  • Haskell
    a046758 n = a046758_list !! (n-1)
    a046758_list = filter (\n -> a050252 n == a055642 n) [1..]
    -- Reinhard Zumkeller, Jun 21 2011
    
  • Mathematica
    edQ[n_] := Total[IntegerLength[DeleteCases[Flatten[FactorInteger[n]], 1]]] == IntegerLength[n]; Join[{1}, Select[Range[140], edQ]] (* Jayanta Basu, Jun 28 2013 *)
  • PARI
    for(n=1, 100, s=""; F=factor(n); for(i=1, #F[, 1], s=concat(s, Str(F[i, 1])); s=concat(s, Str(F[i, 2]))); c=0; for(j=1, #F[, 2], if(F[j, 2]==1, c++)); if(#digits(n)==#s-c, print1(n, ", "))) \\ Derek Orr, Jan 30 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A046758_gen(): # generator of terms
        return (n for n in count(1) if n == 1 or len(str(n)) == sum(len(str(p))+(len(str(e)) if e > 1 else 0) for p, e in factorint(n).items()))
    A046758_list = list(islice(A046758_gen(),20)) # Chai Wah Wu, Feb 18 2022

Formula

A050252(a(n)) = A055642(a(n)). - Reinhard Zumkeller, Jun 21 2011

Extensions

More terms from Eric W. Weisstein

A050252 Number of digits in the prime factorization of n (counting terms of the form p^1 as p).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 4, 2, 3, 3, 3, 2, 3, 2, 4, 3, 3, 2, 3, 2, 3, 3, 4, 2, 3, 3, 3, 3, 3, 2, 4, 2, 3, 3, 2, 3, 4, 2, 4, 3, 3, 2, 4, 2, 3, 3, 4, 3, 4, 2, 3, 2, 3, 2, 4, 3, 3, 3, 4, 2, 4, 3, 4, 3, 3, 3, 3, 2, 3, 4, 4, 3, 4
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. also A377369 (analog for base 2).

Programs

  • Haskell
    a050252 1 = 1
    a050252 n = sum $ map a055642 $
                (a027748_row n) ++ (filter (> 1) $ a124010_row n)
    -- Reinhard Zumkeller, Aug 03 2013, Jun 21 2011
    
  • Mathematica
    nd[n_]:=Total@IntegerLength@Select[Flatten@FactorInteger[n],#>1&];Table[If[n==1,1,nd[n]],{n,102}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • Python
    from sympy import factorint
    def a(n): return 1 if n == 1 else sum(len(str(p))+(len(str(e)) if e>1 else 0) for p, e in factorint(n).items())
    print([a(n) for n in range(1, 103)]) # Michael S. Branicky, Dec 27 2024

Formula

a(A192010(n)) = n and a(m) != n for m < A192010(n);
a(A046759(n)) < A055642(A046759(n)); a(A046758(n)) = A055642(A046758(n)); a(A046760(n)) > A055642(A046760(n)). [Reinhard Zumkeller, Jun 21 2011]
Showing 1-2 of 2 results.