cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073146 Triangle of numbers {a(n,k), n >= 0, 0 <= k <= n} defined by a(0,0)=1, a(n,0)=A000670(n), a(n,n)=A000629(n), a(n,k) = a(n,k-1) + a(n-1,k-1); a(n+1,0) = Sum_{k=0..n} a(n,k).

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 13, 16, 20, 26, 75, 88, 104, 124, 150, 541, 616, 704, 808, 932, 1082, 4683, 5224, 5840, 6544, 7352, 8284, 9366, 47293, 51976, 57200, 63040, 69584, 76936, 85220, 94586, 545835, 593128, 645104, 702304, 765344, 834928, 911864
Offset: 0

Views

Author

Paul D. Hanna, Jul 18 2002

Keywords

Comments

Related to preferential arrangements of n elements (A000670) and necklaces of sets of labeled beads (A000629).
Row sums are 1, 3, 13, 75, 541, ... (A000670 starting from A000670(1), the second "1"). - Gary W. Adamson, May 31 2005

Examples

			Triangle begins:
    1;
    1,   2;
    3,   4,   6;
   13,  16,  20,  26;
   75,  88, 104, 124, 150;
  541, 616, 704, 808, 932, 1082;
  ...
		

Crossrefs

Main diagonal is in A098696.

Programs

  • Mathematica
    Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; Fubini[0, 1] = 1;
    a[n_, k_] := Sum[Binomial[k, i-n+k] Fubini[i, 1], {i, n-k, n}];
    Table[a[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 30 2016, after Vladeta Jovovic *)

Formula

From Vladeta Jovovic, Oct 15 2006: (Start)
Double-exponential generating function: Sum_{n, k} a(n-k, k) x^n/n! y^k/k! = exp(y)/(2-exp(x+y)).
a(n,k) = Sum_{i=n-k..n} binomial(k,i-n+k)*A000670(i). (End)