Original entry on oeis.org
1, 4, 104, 6544, 765344, 143639104, 39511297664, 14979797833984, 7487442077817344, 4770988535512474624, 3774873839360539879424, 3630982576832133263233024, 4172729918808369709126098944
Offset: 0
-
Table[Sum[Binomial[n, k] * Sum[StirlingS2[2*n-k, j]*j!, {j, 0, 2*n-k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 03 2015 *)
A162509
Row sums of the absolute values of a triangular array related to the Bernoulli numbers.
Original entry on oeis.org
1, 1, 4, 20, 124, 932, 8284, 85220, 997084, 13082852, 190320604, 3040770020, 52937870044, 997533561572, 20228969244124, 439283696014820, 10170742982007004, 250110224694309092, 6510327792455418844, 178832105312143131620, 5169772417850111583964
Offset: 0
-
A162508 := proc(n,k) local v; if n=0 and k=0 then 1 else
add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
a := proc(n) local k; add(abs(A162508(n,k)),k=0..n) end:
-
t[0, 0] = 1; t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v+1)^(n-1), {v, 0, k}]; a[n_] := Sum[Abs[t[n, k]], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Jun 28 2013 *)
-
def A162509(n):
return add(abs(A162508(n, k)) for k in (0..n))
[A162509(n) for n in (0..20)] # Peter Luschny, Jul 21 2014
A122101
T(n,k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A000670(n-k+i).
Original entry on oeis.org
1, 1, 0, 3, 2, 2, 13, 10, 8, 6, 75, 62, 52, 44, 38, 541, 466, 404, 352, 308, 270, 4683, 4142, 3676, 3272, 2920, 2612, 2342, 47293, 42610, 38468, 34792, 31520, 28600, 25988, 23646, 545835, 498542, 455932, 417464, 382672, 351152, 322552, 296564, 272918
Offset: 0
Triangle begins as:
1;
1, 0;
3, 2, 2;
13, 10, 8, 6;
75, 62, 52, 44, 38;
541, 466, 404, 352, 308, 270;
4683, 4142, 3676, 3272, 2920, 2612, 2342;
...
-
A000670:= function(n)
return Sum([0..n], i-> Factorial(i)*Stirling2(n,i) ); end;
T:= function(n,k)
return Sum([0..k], j-> (-1)^(k-j)*Binomial(k, j)*A000670(n-k+j) ); end;
Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # G. C. Greubel, Oct 02 2019
-
A000670:= func< n | &+[Factorial(k)*StirlingSecond(n,k): k in [0..n]] >;
[(&+[(-1)^(k-j)*Binomial(k,j)*A000670(n-k+j): j in [0..k]]): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 02 2019
-
T:= (n, k)-> k!*(n-k)!*coeff(series(coeff(series(exp(-y)/
(2-exp(x+y)), y, k+1), y, k), x, n-k+1), x, n-k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 02 2019
# second Maple program:
b:= proc(n) option remember; `if`(n<2, 1,
add(b(n-j)*binomial(n, j), j=1..n))
end:
T:= (n, k)-> add(binomial(k, j)*(-1)^j*b(n-j), j=0..k):
seq(seq(T(n, k), k=0..n), n=0..12); # Alois P. Heinz, Oct 02 2019
-
A000670[n_]:= If[n==0,1,Sum[k! StirlingS2[n, k], {k, n}]]; T[n_, k_]:= Sum[(-1)^(k-j)*Binomial[k, j]*A000670[n-k+j], {j,0,k}]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 02 2019 *)
-
A000670(n) = sum(k=0,n, k!*stirling(n,k,2));
T(n,k) = sum(j=0,k, (-1)^(k-j)*binomial(k, j)*A000670(n-k+j));
for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 02 2019
-
def A000670(n): return sum(factorial(k)*stirling_number2(n,k) for k in (0..n))
def T(n,k): return sum((-1)^(k-j)*binomial(k, j)*A000670(n-k+j) for j in (0..k))
[[T(n,k) for k in (0..n)] for n in (0..10)]
A162508
A binomial sum of powers related to the Bernoulli numbers, triangular array, read by rows.
Original entry on oeis.org
-1, -2, 2, -4, 10, -6, -8, 38, -54, 24, -16, 130, -330, 336, -120, -32, 422, -1710, 3000, -2400, 720, -64, 1330, -8106, 21840, -29400, 19440, -5040, -128, 4118, -36414, 141624, -285600, 312480, -176400, 40320
Offset: 1
For n >= 1, k >= 1:
..................... -1
................... -2, 2
................. -4, 10, -6
.............. -8, 38, -54, 24
......... -16, 130, -330, 336, -120
..... -32, 422, -1710, 3000, -2400, 720
-64, 1330, -8106, 21840, -29400, 19440, -5040
-
T := proc(n,k) local v; if n=0 and k=0 then 1 else
add((-1)^v*v*binomial(k,v)*(v+1)^(n-1),v=0..k) fi end:
# Peter Bala's e.g.f. assuming offset 0:
egf := (x, z) -> -((1-x)/exp(z) + x)^(-2):
ser := series(egf(x, z), z, 10): coz := n -> n!*coeff(ser, z, n):
row := n -> seq(coeff(coz(n), x, k), k = 0..n):
seq(print(row(n)), n = 0..9); # Peter Luschny, Jan 28 2021
-
t[n_, k_] := Sum[(-1)^v*v*Binomial[k, v]*(v + 1)^(n - 1), {v, 0, k}]; Table[t[n, k], {n, 1, 8}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 26 2013, after Maple *)
-
def A162508(n, k):
if n==0 and k==0: return 1
return add((-1)^v*v*binomial(k, v)*(v+1)^(n-1) for v in (0..k))
for n in (1..8): [A162508(n, k) for k in (1..n)] # Peter Luschny, Jul 21 2014
Showing 1-4 of 4 results.
Comments