A073156 Main diagonal sequence of triangle A073153.
1, 2, 9, 36, 156, 698, 3210, 15080, 72060, 349184, 1711869, 8475494, 42318018, 212843826, 1077391794, 5484472880, 28058940086, 144195777552, 744017466318, 3852968380624, 20019113126120, 104329129258596, 545214946753377
Offset: 0
Programs
-
PARI
a(n, r=2, s=2, t=2, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 07 2024
Formula
G.f.: 1/4*(1-(1-4*x*(1+x)^2)^(1/2))^2/x^2/(1+x)^4. - Vladeta Jovovic, Oct 10 2003
From Seiichi Manyama, Dec 07 2024: (Start)
G.f. A(x) satisfies A(x) = ( 1 + x * (1 + x)^2 * A(x) )^2.
a(n) = Sum_{k=0..n} binomial(2*k+2,k) * binomial(2*k,n-k)/(k+1). (End)
Extensions
More terms from Vladeta Jovovic, Oct 10 2003