cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073185 Sum of cubefree divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 13, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 39, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68, 126, 96, 144, 72
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2002

Keywords

Comments

Sum of divisors of the cubefree kernel of n (see first formula).

Examples

			The divisors of 56 are {1, 2, 4, 7, 8, 14, 28, 56}, 8=2^3 and 56=7*2^3 are not cubefree, therefore a(56) = 1 + 2 + 4 + 7 + 14 + 28 = 56.
		

Crossrefs

Programs

  • Haskell
    a073185 = sum . filter ((== 1) . a212793) . a027750_row
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    charFfree := proc(n,t) local f; for f in ifactors(n)[2] do if op(2,f) >= t then return 0 ; end if; end do: return 1 ; end proc:
    A073185 := proc(n) add( d*charFfree(d,3),d =numtheory[divisors](n) ); end proc: # R. J. Mathar, Apr 12 2011
  • Mathematica
    nn = 71;f[list_, i_] := list[[i]]; a =Table[If[Max[FactorInteger[n][[All, 2]]] <= 2, n, 0], {n, 1, nn}]; b = Table[1, {nn}]; Select[Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], # > 0 &] (* Geoffrey Critzer, Mar 22 2015 *)
    f[p_, e_] := 1 + p + If[e > 1, p^2, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n) = {my(f=factor(n)); for (i=1, #f~, p = f[i,1]; if ((e=f[i,2]) == 1, f[i,1] = 1+p, f[i,1] = 1+p+p^2); f[i,2] = 1;); factorback(f);} \\ Michel Marcus, Feb 06 2015

Formula

a(n) = A000203(A007948(n)).
a(n) <= A073183(n).
Multiplicative with a(p) = 1+p, a(p^e) = 1 + p + p^2, e>1. - Christian G. Bower, May 18 2005
a(n) = sum(A212793(A027750(n,k)) * A027750(n,k): k=1..A000005(n)). - Reinhard Zumkeller, May 27 2012
Dirichlet g.f.: zeta(s)*zeta(s-1)/zeta(3s-3). - R. J. Mathar, Apr 12 2011
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*Zeta(3)). - Vaclav Kotesovec, Feb 01 2019

Extensions

Incorrect comment removed by Álvar Ibeas, Feb 06 2015