A073190 Number of general plane trees which are either empty (the case a(0)), or whose root degree is either 1 (i.e., the planted trees) or the two leftmost subtrees (of the root node) are identical.
1, 1, 2, 3, 8, 20, 60, 181, 584, 1916, 6476, 22210, 77416, 272840, 971640, 3488925, 12621168, 45946156, 168206604, 618853270, 2286974856, 8485246456, 31596023208, 118037654258, 442287721872, 1661790513944, 6259494791096
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
A073190 := proc(n) local d; Cat(n-1)+ add( (`mod`((n-d+1),2))*Cat((n-d-2)/2)*Cat(d), d=0..n-2); end; Cat := n -> binomial(2*n,n)/(n+1);
-
Mathematica
a[n_] := CatalanNumber[n - 1] + Sum[Mod[n - d + 1, 2]*CatalanNumber[(n - d - 2)/2]*CatalanNumber[d], {d, 0, n - 2}]; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 06 2016 *)
-
PARI
Cat(n) = binomial(2*n,n)/(n+1); a(n) = if (n==0, 1, Cat(n-1) + sum(i=0, n-2, if (!((n-i)%2), Cat((n-i-2)/2)*Cat(i)))); \\ Michel Marcus, May 30 2018
Formula
a(0)=1, a(n) = Cat(n-1) + Sum_{i=0..n-2, (n-i) is even} Cat((n-i-2)/2)*Cat(i), where Cat(n) is A000108(n).
Comments