A073192 Number of general plane trees whose n-th subtree from the left is equal to the n-th subtree from the right, for all its subtrees (i.e., are palindromic in the shallow sense).
1, 1, 2, 3, 8, 18, 54, 155, 500, 1614, 5456, 18630, 64960, 228740, 814914, 2926323, 10589916, 38561814, 141219432, 519711666, 1921142832, 7129756188, 26555149404, 99228108222, 371886574632, 1397548389644, 5265131346368
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A073192 := proc(n) local d; add( (`mod`((n-d+1),2))*Cat((n-d)/2)*(`if`((0=d),1,Cat(d-1))), d=0..n); end; Cat := n -> binomial(2*n,n)/(n+1);
-
Mathematica
a[n_] := Sum[Mod[n - k + 1, 2]*CatalanNumber[(n - k)/2]*If[k == 0, 1, CatalanNumber[k - 1]], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2016 *)
-
PARI
Gat(n) = if (n == -1, 1, binomial(2*n,n)/(n+1)); a(n) = sum(i=0, n, if (!((n-i)%2), Gat((n-i)/2)*Gat(i-1))); \\ Michel Marcus, May 30 2018
Comments