cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073192 Number of general plane trees whose n-th subtree from the left is equal to the n-th subtree from the right, for all its subtrees (i.e., are palindromic in the shallow sense).

Original entry on oeis.org

1, 1, 2, 3, 8, 18, 54, 155, 500, 1614, 5456, 18630, 64960, 228740, 814914, 2926323, 10589916, 38561814, 141219432, 519711666, 1921142832, 7129756188, 26555149404, 99228108222, 371886574632, 1397548389644, 5265131346368
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

The Catalan bijection A057508 fixes only these kinds of trees, so this occurs in the table A073202 as row 168.

Crossrefs

Occurs for first time in A073202 as row 168.
Cf. also A073190.

Programs

  • Maple
    A073192 := proc(n) local d; add( (`mod`((n-d+1),2))*Cat((n-d)/2)*(`if`((0=d),1,Cat(d-1))), d=0..n); end;
    Cat := n -> binomial(2*n,n)/(n+1);
  • Mathematica
    a[n_] := Sum[Mod[n - k + 1, 2]*CatalanNumber[(n - k)/2]*If[k == 0, 1, CatalanNumber[k - 1]], {k, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 05 2016 *)
  • PARI
    Gat(n) = if (n == -1, 1, binomial(2*n,n)/(n+1));
    a(n) = sum(i=0, n, if (!((n-i)%2), Gat((n-i)/2)*Gat(i-1))); \\ Michel Marcus, May 30 2018

Formula

a(n) = Sum_{i=0..n, (n-i) is even} Gat((n-i)/2)*Gat(i-1), where Gat(-1) = 1 and otherwise like A000108(n).
A073193(n) = (A000108(n) + A073192(n))/2.