cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073202 Array of fix-count sequences for the table A073200.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 8, 1, 0, 1, 1, 0, 20, 0, 0, 0, 1, 1, 5, 60, 2, 0, 1, 0, 1, 1, 0, 181, 0, 0, 0, 0, 0, 1, 1, 14, 584, 5, 0, 2, 0, 1, 2, 1, 1, 0, 1916, 0, 0, 0, 0, 0, 5, 0, 1, 1, 42, 6476, 14, 0, 5, 0, 0, 14, 1, 2, 1, 1, 0, 22210, 0, 0, 0, 0, 0, 42, 0, 1, 0, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Each row of this table gives the counts of elements fixed by the Catalan bijection (given in the corresponding row of A073200) when it acts on A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Crossrefs

Cf. also A073201, A073203.
Few EIS-sequences which occur in this table. Only the first known occurrence(s) given (marked with ? if not yet proved/unclear):
Rows 0, 2, 4, etc.: "Aerated Catalan numbers" shifted right and prepended with 1 (Cf. A000108), Row 1: A073190, Rows 3, 5, 261, 2614, 2618, 17517, etc: A019590 but with offset 0 instead of 1 (means that the Catalan bijections like A073269, A073270, A057501, A057505, A057503 and A057161 never fix any Catalan structure of size larger than 1).
Row 6: A036987, Row 7: A000108, Rows 12, 14, 20, ...: A057546, Rows 16, 18: A034731, Row 41: A073268, Row 105: essentially A073267, Row 57, ..., 164: A001405, Row 168: A073192, Row 416: essentially A023359 ?, Row 10435: also A036987.

A073190 Number of general plane trees which are either empty (the case a(0)), or whose root degree is either 1 (i.e., the planted trees) or the two leftmost subtrees (of the root node) are identical.

Original entry on oeis.org

1, 1, 2, 3, 8, 20, 60, 181, 584, 1916, 6476, 22210, 77416, 272840, 971640, 3488925, 12621168, 45946156, 168206604, 618853270, 2286974856, 8485246456, 31596023208, 118037654258, 442287721872, 1661790513944, 6259494791096
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

The Catalan bijection A072796 fixes only these kinds of trees, so this occurs in the table A073202 as row 1.

Crossrefs

Occurs for first time in A073202 as row 1. A073191(n) = (A000108(n)+A073190(n))/2. Cf. also A073192.

Programs

  • Maple
    A073190 := proc(n) local d; Cat(n-1)+ add( (`mod`((n-d+1),2))*Cat((n-d-2)/2)*Cat(d), d=0..n-2); end;
    Cat := n -> binomial(2*n,n)/(n+1);
  • Mathematica
    a[n_] := CatalanNumber[n - 1] + Sum[Mod[n - d + 1, 2]*CatalanNumber[(n - d - 2)/2]*CatalanNumber[d], {d, 0, n - 2}]; a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 06 2016 *)
  • PARI
    Cat(n) = binomial(2*n,n)/(n+1);
    a(n) = if (n==0, 1, Cat(n-1) + sum(i=0, n-2, if (!((n-i)%2), Cat((n-i-2)/2)*Cat(i)))); \\ Michel Marcus, May 30 2018

Formula

a(0)=1, a(n) = Cat(n-1) + Sum_{i=0..n-2, (n-i) is even} Cat((n-i-2)/2)*Cat(i), where Cat(n) is A000108(n).

A073193 Number of separate orbits/cycles to which the Catalan bijection A057508 partitions each A000108(n) structures encoded in the range [A014137(n-1)..A014138(n-1)] of the sequence A014486/A063171.

Original entry on oeis.org

1, 1, 2, 4, 11, 30, 93, 292, 965, 3238, 11126, 38708, 136486, 485820, 1744677, 6310584, 22973793, 84103302, 309429066, 1143487428, 4242631626, 15798011604, 59018856522, 221143860936, 830895360978, 3129747395548, 11816242209260
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Crossrefs

Occurs for first time in A073201 as row 168.

Formula

a(n) = (A000108(n)+A073192(n))/2

A130373 Signature permutation of a Catalan automorphism: flip the positions of even- and odd-indexed elements at the top level of the list, leaving the first element in place if the length (A057515(n)) is odd.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 11, 10, 16, 19, 14, 15, 12, 17, 18, 13, 20, 21, 22, 23, 25, 24, 30, 33, 37, 29, 26, 44, 47, 27, 53, 56, 60, 28, 39, 38, 43, 52, 42, 40, 31, 45, 46, 32, 48, 49, 50, 51, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 67, 66, 72, 75, 79, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Comments

This self-inverse automorphism permutes the top level of a list of even length (1 2 3 4 ... 2n-1 2n) as (2 1 4 3 ... 2n 2n-1), and when applied to a list of odd length (1 2 3 4 5 ... 2n 2n+1), permutes it as (1 3 2 5 4 ... 2n+1 2n).

Crossrefs

SPINE and ENIPS transform of *A130340 (transformations explained in A122203 and A122204).
The number of cycles and the number of fixed points in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A073193 and A073192.

Formula

A130374 Signature permutation of a Catalan automorphism: flip the positions of even- and odd-indexed elements at the top level of the list, leaving the last element in place if the length (A057515(n)) is odd.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 5, 7, 8, 9, 10, 14, 16, 19, 11, 15, 12, 17, 18, 13, 20, 21, 22, 23, 25, 24, 26, 27, 37, 38, 42, 44, 47, 51, 53, 56, 60, 28, 29, 39, 43, 52, 30, 40, 31, 45, 46, 32, 48, 49, 50, 33, 41, 34, 54, 55, 35, 57, 58, 59, 36, 61, 62, 63, 64, 65, 66, 70, 72, 75, 67, 71
Offset: 0

Views

Author

Antti Karttunen, Jun 05 2007

Keywords

Comments

This self-inverse automorphism permutes the top level of a list of even length (1 2 3 4 ... 2n-1 2n) as (2 1 4 3 ... 2n 2n-1), and when applied to a list of odd length (1 2 3 4 ... 2n-1 2n 2n+1), permutes it as (2 1 4 3 ... 2n 2n-1 2n+1).

Crossrefs

Cf. a(n) = A057508(A130373(A057508(n))) = A057164(A130373(A057164(n))) = A127285(A127288(n)) = A127287(A127286(n)). Also a(A085223(n)) = A130370(A122282(A130369(A085223(n)))) holds for all n>=0. The number of cycles and the number of fixed points in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A073193 and A073192.
Showing 1-5 of 5 results.