cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073213 Sum of two powers of 17.

Original entry on oeis.org

2, 18, 34, 290, 306, 578, 4914, 4930, 5202, 9826, 83522, 83538, 83810, 88434, 167042, 1419858, 1419874, 1420146, 1424770, 1503378, 2839714, 24137570, 24137586, 24137858, 24142482, 24221090, 25557426, 48275138, 410338674, 410338690, 410338962, 410343586, 410422194, 411758530, 434476242, 820677346
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 17^2 + 17^0 = 290.
Table T(n,m) begins:
      2;
     18,    34;
    290,   306,   578;
   4914,  4930,  5202,  9826;
  83522, 83538, 83810, 88434, 167042;
  ...
		

Crossrefs

Cf. A001026 (powers of 17).
Equals twice A073221.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073214 (19), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Union[Total/@Tuples[17^Range[0,10],2]] (* Harvey P. Dale, Apr 09 2015 *)
  • Python
    from math import isqrt
    def A073213(n): return 17**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+17**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 17^n + 17^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 18*x)/((1 - x)*(1 - 17*x)*(1 - 17*x*y)). - J. Douglas Morrison, Jul 26 2021