cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073221 The terms of A073213 (sums of two powers of 17) divided by 2.

Original entry on oeis.org

1, 9, 17, 145, 153, 289, 2457, 2465, 2601, 4913, 41761, 41769, 41905, 44217, 83521, 709929, 709937, 710073, 712385, 751689, 1419857, 12068785, 12068793, 12068929, 12071241, 12110545, 12778713, 24137569, 205169337, 205169345, 205169481, 205171793, 205211097, 205879265, 217238121, 410338673
Offset: 0

Views

Author

Jeremy Gardiner, Jul 21 2002

Keywords

Examples

			a(4) = 145 = (17^2+17^0) / 2.
		

Crossrefs

Cf. A073213.

Formula

(17^n + 17^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.

Extensions

Offset corrected by Alois P. Heinz, Jul 27 2021

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021

A073214 Sum of two powers of 19.

Original entry on oeis.org

2, 20, 38, 362, 380, 722, 6860, 6878, 7220, 13718, 130322, 130340, 130682, 137180, 260642, 2476100, 2476118, 2476460, 2482958, 2606420, 4952198, 47045882, 47045900, 47046242, 47052740, 47176202, 49521980, 94091762, 893871740, 893871758, 893872100, 893878598, 894002060, 896347838, 940917620, 1787743478
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 19^2 + 19^0 = 362.
Table begins:
       2;
      20,     38;
     362,    380,    722;
    6860,   6878,   7220,  13718;
  130322, 130340, 130682, 137180, 260642;
  ...
		

Crossrefs

Cf. A001029.
Equals twice A073222.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[19^n + 19^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Total/@Tuples[19^Range[0,10],2]//Union (* Harvey P. Dale, Jan 04 2019 *)
  • Python
    from math import isqrt
    def A073214(n): return 19**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+19**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 19^n + 19^m for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 20*x) / ((1 - x) * (1 - 19*x) * (1 - 19*x*y)). - J. Douglas Morrison, Jul 28 2021

A073215 Sum of two powers of 23.

Original entry on oeis.org

2, 24, 46, 530, 552, 1058, 12168, 12190, 12696, 24334, 279842, 279864, 280370, 292008, 559682, 6436344, 6436366, 6436872, 6448510, 6716184, 12872686, 148035890, 148035912, 148036418, 148048056, 148315730, 154472232, 296071778
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 23^2 + 23^0 = 530.
Table begins:
       2;
      24,     46;
     530,    552,   1058;
   12168,  12190,  12696,  24334;
  279842, 279864, 280370, 292008, 559682;
  ...
		

Crossrefs

Cf. A009967.
Equals twice A072822.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19).

Programs

  • Mathematica
    With[{nn=30},Take[Union[Total/@Tuples[23^Range[0,nn],2]],nn]] (* Harvey P. Dale, Oct 16 2017 *)
  • Python
    from math import isqrt
    def A073215(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n, m) = 23^n + 23^m, for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 24*x) / ((1 - x) * (1 - 23*x) * (1 - 23*x*y)). - J. Douglas Morrison, Jul 29 2021
Showing 1-4 of 4 results.