cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073222 A073214/2.

Original entry on oeis.org

1, 10, 19, 181, 190, 361, 3430, 3439, 3610, 6859, 65161, 65170, 65341, 68590, 130321, 1238050, 1238059, 1238230, 1241479, 1303210, 2476099, 23522941, 23522950, 23523121, 23526370, 23588101, 24760990, 47045881, 446935870
Offset: 1

Views

Author

Jeremy Gardiner, Jul 21 2002

Keywords

Comments

The main sequence is A073214. Please put any comments, references, etc. there. - Michael B. Porter, Jun 18 2013

Crossrefs

Cf. A073214 (sums of two powers of 19).

A073211 Sum of two powers of 11.

Original entry on oeis.org

2, 12, 22, 122, 132, 242, 1332, 1342, 1452, 2662, 14642, 14652, 14762, 15972, 29282, 161052, 161062, 161172, 162382, 175692, 322102, 1771562, 1771572, 1771682, 1772892, 1786202, 1932612, 3543122, 19487172, 19487182, 19487292, 19488502, 19501812, 19648222, 21258732, 38974342
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 11^2 + 11^0 = 122.
Table T(n,m) begins:
      2;
     12,    22;
    122,   132,   242;
   1332,  1342,  1452,  2662;
  14642, 14652, 14762, 15972, 29282;
  ...
		

Crossrefs

Cf. A001020 (powers of 11).
Equals twice A073219.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19), A073215 (23).

Programs

  • Mathematica
    t = 11^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
  • Python
    from math import isqrt
    def A073211(n): return 11**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+11**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 11^n + 11^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 12*x)/((1 - x)*(1 - 11*x)*(1 - 11*x*y)). - J. Douglas Morrison, Jul 26 2021

A073213 Sum of two powers of 17.

Original entry on oeis.org

2, 18, 34, 290, 306, 578, 4914, 4930, 5202, 9826, 83522, 83538, 83810, 88434, 167042, 1419858, 1419874, 1420146, 1424770, 1503378, 2839714, 24137570, 24137586, 24137858, 24142482, 24221090, 25557426, 48275138, 410338674, 410338690, 410338962, 410343586, 410422194, 411758530, 434476242, 820677346
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 17^2 + 17^0 = 290.
Table T(n,m) begins:
      2;
     18,    34;
    290,   306,   578;
   4914,  4930,  5202,  9826;
  83522, 83538, 83810, 88434, 167042;
  ...
		

Crossrefs

Cf. A001026 (powers of 17).
Equals twice A073221.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073214 (19), A073215 (23).

Programs

  • Mathematica
    Flatten[Table[Table[17^n + 17^m, {m, 0, n}], {n, 0, 7}]] (* T. D. Noe, Jun 18 2013 *)
    Union[Total/@Tuples[17^Range[0,10],2]] (* Harvey P. Dale, Apr 09 2015 *)
  • Python
    from math import isqrt
    def A073213(n): return 17**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+17**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n,m) = 17^n + 17^m, n = 0, 1, 2, 3, ..., m = 0, 1, 2, 3, ... n.
Bivariate g.f.: (2 - 18*x)/((1 - x)*(1 - 17*x)*(1 - 17*x*y)). - J. Douglas Morrison, Jul 26 2021

A073215 Sum of two powers of 23.

Original entry on oeis.org

2, 24, 46, 530, 552, 1058, 12168, 12190, 12696, 24334, 279842, 279864, 280370, 292008, 559682, 6436344, 6436366, 6436872, 6448510, 6716184, 12872686, 148035890, 148035912, 148036418, 148048056, 148315730, 154472232, 296071778
Offset: 0

Views

Author

Jeremy Gardiner, Jul 20 2002

Keywords

Examples

			T(2,0) = 23^2 + 23^0 = 530.
Table begins:
       2;
      24,     46;
     530,    552,   1058;
   12168,  12190,  12696,  24334;
  279842, 279864, 280370, 292008, 559682;
  ...
		

Crossrefs

Cf. A009967.
Equals twice A072822.
Sums of two powers of n: A073423 (0), A007395 (1), A173786 (2), A055235 (3), A055236 (4), A055237 (5), A055257 (6), A055258 (7), A055259 (8), A055260 (9), A052216 (10), A073211 (11), A194887 (12), A072390 (13), A055261 (16), A073213 (17), A073214 (19).

Programs

  • Mathematica
    With[{nn=30},Take[Union[Total/@Tuples[23^Range[0,nn],2]],nn]] (* Harvey P. Dale, Oct 16 2017 *)
  • Python
    from math import isqrt
    def A073215(n): return 23**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+23**(n-1-(a*(a+1)>>1)) # Chai Wah Wu, Apr 09 2025

Formula

T(n, m) = 23^n + 23^m, for n >= 0 and m in [0..n].
Bivariate g.f.: (2 - 24*x) / ((1 - x) * (1 - 23*x) * (1 - 23*x*y)). - J. Douglas Morrison, Jul 29 2021
Showing 1-4 of 4 results.