A073216 The terms of A055235 (sums of two powers of 3) divided by 2.
1, 2, 3, 5, 6, 9, 14, 15, 18, 27, 41, 42, 45, 54, 81, 122, 123, 126, 135, 162, 243, 365, 366, 369, 378, 405, 486, 729, 1094, 1095, 1098, 1107, 1134, 1215, 1458, 2187, 3281, 3282, 3285, 3294, 3321, 3402, 3645, 4374, 6561, 9842, 9843, 9846, 9855, 9882, 9963, 10206, 10935, 13122, 19683
Offset: 0
Examples
T(2,0) = 5 = (3^2 + 3^0) / 2. Triangle begins: 1; 2, 3; 5, 6, 9; 14, 15, 18, 27; 41, 42, 45, 54, 81; 122, 123, 126, 135, 162, 243; 365, 366, 369, 378, 405, 486, 729; 1094, 1095, 1098, 1107, 1134, 1215, 1458, 2187; ...
Links
- C. Armana, Coefficients of Drinfeld modular forms and Hecke operators, Journal of Number Theory 131 (2011), 1435-1460.
Crossrefs
Programs
-
Python
from math import isqrt def A073216(n): return 3**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+3**(n-1-(a*(a+1)>>1))>>1 # Chai Wah Wu, Apr 08 2025
Formula
T(n,m) = (3^n + 3^m) / 2, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n.
Extensions
Edited by Jeremy Gardiner, Oct 08 2011
Offset changed by Alois P. Heinz, Apr 08 2025
Comments