A073226 Decimal expansion of e^e.
1, 5, 1, 5, 4, 2, 6, 2, 2, 4, 1, 4, 7, 9, 2, 6, 4, 1, 8, 9, 7, 6, 0, 4, 3, 0, 2, 7, 2, 6, 2, 9, 9, 1, 1, 9, 0, 5, 5, 2, 8, 5, 4, 8, 5, 3, 6, 8, 5, 6, 1, 3, 9, 7, 6, 9, 1, 4, 0, 7, 4, 6, 4, 0, 5, 9, 1, 4, 8, 3, 0, 9, 7, 3, 7, 3, 0, 9, 3, 4, 4, 3, 2, 6, 0, 8, 4, 5, 6, 9, 6, 8, 3, 5, 7, 8, 7, 3, 4, 6, 0, 5, 1, 1, 5
Offset: 2
Examples
15.15426224147926418976043027262991190552854853685613976914...
Links
- Harry J. Smith, Table of n, a(n) for n = 2..20000
- D. Marques and J. Sondow, The Schanuel Subset Conjecture implies Gelfond's Power Tower Conjecture, arXiv:1212.6931 [math.NT], 2012-2013.
- Simon Plouffe, exp(E) to 2000 places
- J. Sondow and D. Marques, Algebraic and transcendental solutions of some exponential equations, Annales Mathematicae et Informaticae 37 (2010) 151-164.
- A. Vernescu, About the use of a result of Professor Alexandru Lupas to obtain some properties in the theory of the number e, Gen. Math., Vol. 15, No. 1 (2007), 75-80.
Crossrefs
Programs
-
Magma
Exp(Exp(1)); // G. C. Greubel, May 29 2018
-
Mathematica
RealDigits[ E^E, 10, 110] [[1]]
-
PARI
exp(exp(1))
-
PARI
{ default(realprecision, 20080); x=exp(1)^exp(1)/10; for (n=2, 20000, d=floor(x); x=(x-d)*10; write("b073226.txt", n, " ", d)); } \\ Harry J. Smith, Apr 30 2009
Formula
Equals Sum_{n>=0} e^n/n!. - Richard R. Forberg, Dec 29 2013
Equals Product_{n>=0} e^(1/n!). - Amiram Eldar, Jun 29 2020
Comments