cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073267 Number of compositions (ordered partitions) of n into exactly two powers of 2.

Original entry on oeis.org

0, 0, 1, 2, 1, 2, 2, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, Jun 25 2002

Keywords

Comments

Starting with 1 = self-convolution of A036987, the characteristic function of the powers of 2. [Gary W. Adamson, Feb 23 2010]

Examples

			For 2 there is only composition {1+1}, for 3 there is {1+2, 2+1}, for 4 {2+2}, for 5 {1+4, 4+1}, for 6 {2+4,4+2}, for 7 none, thus a(2)=1, a(3)=2, a(4)=1, a(5)=2, a(6)=2 and a(7)=0.
		

Crossrefs

The second row of the table A073265. The essentially same sequence 1, 1, 2, 1, 2, 2, 0, 1, ... occurs for first time in A073202 as row 105 (the fix count sequence of A073290). The positions of 1's for n > 1 is given by the characteristic function of A000079, i.e. A036987 with offset 1 instead of 0 and the positions of 2's is given by A018900. Cf. also A023359.
Cf. A036987. [Gary W. Adamson, Feb 23 2010]

Programs

  • Haskell
    a073267 n = sum $ zipWith (*) a209229_list $ reverse $ take n a036987_list
    -- Reinhard Zumkeller, Mar 07 2012
    
  • Maple
    f:= proc(n) local d;
    d:= convert(convert(n,base,2),`+`);
    if d=2 then 2 elif d=1 then 1 else 0 fi
    end proc:
    0, 0, seq(f(n),n=2..100); # Robert Israel, Jul 07 2016
  • Mathematica
    Table[Count[Map[{#, n - #} &, Range[0, n]], k_ /; Times @@ Boole@ Map[IntegerQ@ Log2@ # &, k] == 1], {n, 0, 88}] (* Michael De Vlieger, Jul 08 2016 *)
  • PARI
    N=166; x='x+O('x^N);
    v=Vec( 'a0 + sum(k=0,ceil(log(N)/log(2)), x^(2^k) )^2 );
    v[1] -= 'a0;  v
    /* Joerg Arndt, Oct 21 2012 */
    
  • Python
    def A073267(n): return m if n>1 and (m:=n.bit_count())<3 else 0 # Chai Wah Wu, Oct 30 2024

Formula

G.f.: (Sum_{k>=0} x^(2^k) )^2. - Vladeta Jovovic, Mar 28 2005
a(n+1) = A000108(n) mod 4, n>=1 [Theorem 2.3 of Eu et al.]. - R. J. Mathar, Feb 27 2008
a(n) = sum (A209229(k)*A036987(n-k): k = 0..n), convolution of characteristic functions of 2^n and 2^n-1. [Reinhard Zumkeller, Mar 07 2012]
a(n+2) = A000168(n) mod 4. - John M. Campbell, Jul 07 2016