A073324 Smallest x such that prime(x) mod c(x) = n, where prime(j) is the j-th prime, c(j) is the j-th composite number.
5, 1, 2, 8, 3, 242, 4, 245, 100, 8313, 10, 50190, 23, 8338, 3390, 12, 24, 308926, 13, 49, 25, 15, 26, 12556637, 112, 55, 117, 58, 56, 1400, 59, 265, 122, 267, 31, 12556641, 603, 270, 33, 12556639, 126, 272, 65, 66, 127, 63, 35, 50270, 37, 1413, 129, 1434, 38, 1411
Offset: 1
Keywords
Examples
x=10: p(10)=29,c(10)=18, Mod[29,18]=11 appears first here, so a(11)=10.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..400
Programs
-
Mathematica
f[x_] := Mod[Prime[x], FixedPoint[x+PrimePi[ # ]+1&, x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 1, 400000}]; t Module[{nn=500000,cmps,prs,len},cmps=Select[Range[nn],CompositeQ];len= Length[ cmps];Table[SelectFirst[Thread[{Range[len],Prime[Range[len]],cmps}],Mod[#[[2]], #[[3]]] ==n&],{n,23}]][[All,1]] (* The program generates the first 23 terms of the sequence. *) (* Harvey P. Dale, Nov 26 2022 *)
-
PARI
isc(n) = (n != 1) && !isprime(n); lista(nn) = {my(vp = primes(nn), vc = select(x->isc(x), [1..nn])); for (n=1, 50, my(k=1); while((vp[k] % vc[k]) != n, k++; if ((k>#vp) || (k>#vc), return)); print1(k, ", "););} \\ Michel Marcus, Sep 02 2019
-
PARI
a(n) = my(p=2); forcomposite(c=4, oo, if(p % c == n, return(primepi(p))); p = nextprime(p+1)); \\ Daniel Suteu, Sep 02 2019
Extensions
a(24)-a(50) from Michel Marcus, Sep 02 2019
More terms from Giovanni Resta, Sep 03 2019
Comments