cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A281573 Expansion of Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j), where mu() is the Moebius function (A008683).

Original entry on oeis.org

1, 3, 6, 11, 19, 33, 51, 79, 118, 176, 252, 362, 505, 705, 965, 1314, 1765, 2365, 3127, 4124, 5387, 7012, 9052, 11653, 14893, 18982, 24048, 30378, 38176, 47857, 59704, 74302, 92099, 113879, 140300, 172463, 211297, 258325, 314887, 383037, 464684, 562653, 679566, 819269, 985449, 1183242, 1417738, 1695886
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 24 2017

Keywords

Comments

Total number of squarefree parts in all partitions of n.
Convolution of A000041 and A034444.

Examples

			a(5) = 19 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 3 + 3 + 4 + 5 = 19.
		

Crossrefs

Programs

  • Mathematica
    nmax = 48; Rest[CoefficientList[Series[Sum[MoebiusMu[i]^2 x^i/(1 - x^i), {i, 1, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i>=1} mu(i)^2*x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).

A284943 Expansion of Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.

Original entry on oeis.org

0, 1, 3, 8, 20, 47, 110, 251, 564, 1251, 2750, 5994, 12978, 27934, 59825, 127565, 270959, 573575, 1210466, 2547562, 5348385, 11203292, 23419629, 48865346, 101782870, 211670094, 439548898, 911515214, 1887865266, 3905400206, 8070139762, 16658958223, 34355273843
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2017

Keywords

Comments

Total number of prime power parts (1 excluded) in all compositions (ordered partitions) of n.

Examples

			a(5) = 20 because we have [5], [4, 1], [3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 4], [1, 3, 1], [1, 2, 2], [1, 2, 1, 1], [1, 1, 3], [1, 1, 2, 1], [1, 1, 1, 2], [1, 1, 1, 1, 1] and 1 + 1 + 2 + 1 + 2 + 2 + 2 + 1 + 1 + 1 + 2 + 1 + 1 + 1 + 1 + 0 = 20.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; nops(ifactors(n)[2])=1 end:
    a:= proc(n) option remember; `if`(n=0, 0, add(a(n-j)+
          `if`(b(j), ceil(2^(n-j-1)), 0), j=1..n))
        end:
    seq(a(n), n=1..33);  # Alois P. Heinz, Aug 07 2019
  • Mathematica
    nmax = 33; Rest[CoefficientList[Series[Sum[Floor[1/PrimeNu[k]] x^k (1 - x)^2/(1 - 2 x)^2, {k, 2, nmax}], {x, 0, nmax}], x]]
  • PARI
    x='x+O('x^34); concat([0], Vec(sum(k=2, 34, (1\omega(k))*x^k*(1 - x)^2/(1 - 2*x)^2))) \\ Indranil Ghosh, Apr 06 2017

Formula

G.f.: Sum_{p prime, k>=1} x^(p^k)*(1 - x)^2/(1 - 2*x)^2.

A281611 Expansion of Sum_{p prime, i>=2} x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 2, 3, 7, 10, 16, 23, 36, 50, 73, 100, 144, 193, 267, 355, 481, 631, 838, 1088, 1426, 1833, 2368, 3019, 3861, 4879, 6178, 7751, 9737, 12131, 15120, 18721, 23181, 28535, 35110, 42991, 52606, 64090, 78015, 94609, 114621, 138398, 166927, 200737, 241131, 288864, 345649, 412592, 491931
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of proper prime power parts (A246547) in all partitions of n.

Examples

			a(6) = 2 because we have [6], [5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 0 + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 2.
		

Crossrefs

Programs

  • Mathematica
    nmax = 52; Rest[CoefficientList[Series[Sum[Sign[PrimeOmega[i] - 1] Floor[1/PrimeNu[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{p prime, i>=2} x^(p^i)/(1 - x^(p^i)) / Product_{j>=1} (1 - x^j).
a(n) = A073335(n) - A037032(n).

A281612 Expansion of Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 8, 12, 20, 28, 45, 62, 92, 127, 181, 244, 340, 452, 614, 809, 1077, 1401, 1841, 2371, 3071, 3923, 5026, 6363, 8078, 10149, 12769, 15939, 19899, 24676, 30604, 37726, 46489, 57007, 69849, 85211, 103871, 126119, 152987, 184955, 223349, 268898, 323384, 387830, 464587, 555168, 662619, 789084
Offset: 1

Views

Author

Ilya Gutkovskiy, Jan 25 2017

Keywords

Comments

Total number of semiprime parts (A001358) in all partitions of n.
Convolution of A000041 and A086971.

Examples

			a(6) = 3 because we have [6], [5, 1], [4, 2], [4, 1, 1], [3, 3], [3, 2, 1], [3, 1, 1, 1], [2, 2, 2], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1] and 1 + 0 + 1 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = 3.
		

Crossrefs

Programs

  • Mathematica
    nmax = 53; Rest[CoefficientList[Series[Sum[Floor[PrimeOmega[i]/2] Floor[2/PrimeOmega[i]] x^i/(1 - x^i), {i, 2, nmax}]/Product[1 - x^j, {j, 1, nmax}], {x, 0, nmax}], x]]

Formula

G.f.: Sum_{i = p*q, p prime, q prime} x^i/(1 - x^i) / Product_{j>=1} (1 - x^j).
Showing 1-4 of 4 results.