A073336 Total number of square parts in all partitions of n.
0, 1, 2, 4, 8, 13, 21, 33, 51, 76, 111, 159, 226, 315, 435, 593, 805, 1077, 1435, 1893, 2486, 3237, 4198, 5405, 6935, 8843, 11235, 14201, 17893, 22437, 28052, 34929, 43371, 53653, 66201, 81410, 99876, 122155, 149063, 181399, 220280, 266811, 322524, 388960
Offset: 0
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0], add((l->l+[0, `if`(j>0 and issqr(i), l[1]*j, 0)])(b(n-i*j, i-1)), j=0..iquo(n, i)))) end: a:= n-> b(n, n)[2] : seq(a(n), n=0..60); # Alois P. Heinz, Feb 19 2013
-
Mathematica
b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i<1, {0, 0}, Sum[Function[{l}, l+{0, If[j>0 && IntegerQ[Sqrt[i]], l[[1]]*j, 0]}][b[n-i*j, i-1]], {j, 0, Quotient[n, i]}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 13 2015, after Alois P. Heinz *)
Formula
G.f.: Sum_{i>=1} x^(i^2)/(1 - x^(i^2)) / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Jan 24 2017
Extensions
More terms from Emeric Deutsch, Nov 18 2004
a(0) inserted by Alois P. Heinz, Feb 19 2013