cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A073402 Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073401.

Original entry on oeis.org

2, 33, 9, 831, 396, 45, 28236, 18297, 3744, 243, 1210140, 968679, 273483, 32481, 1377, 62686440, 58920534, 20681811, 3418767, 268029, 8019, 3810867480, 4075425738, 1683064737, 347584284, 38186478, 2130138, 47385
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k)), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A073401(k,m).

Examples

			k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 33,9; 831,396,45; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: p(k, n)= (n+2)*p(k-1, n+1)+4*(n+2*(k+1))*p(k-1, n)+2*(n+3)*q(k-1, n+1); q(k, n)= (n+1)*p(k-1, n+1)+4*(n+2*(k+1))*q(k-1, n), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]

A073399 Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n>=0, (generalized (1,2)-Fibonacci). Companion triangle is A073400.

Original entry on oeis.org

1, 9, 30, 63, 531, 1050, 405, 6165, 29610, 44520, 2511, 59454, 502821, 1789614, 2245320, 15309, 517104, 6686631, 41182344, 120133692, 131891760, 92583, 4214349, 76790673, 714174327, 3559509360, 8966770308, 8862693840
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073400(k,m).

Examples

			k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,30; 63,531,1050; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: see A073401.

A073400 Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073399.

Original entry on oeis.org

2, 9, 33, 45, 396, 831, 243, 3744, 18297, 28236, 1377, 32481, 273483, 968679, 1210140, 8019, 268029, 3418767, 20681811, 58920534, 62686440, 47385, 2130138, 38186478, 347584284, 1683064737, 4075425738, 3810867480
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,...
The k-th convolution of U0(n) := A001045(n+1), n>= 0, ((1,2) Fibonacci numbers starting with U0(0)=1) with itself is Uk(n) := A073370(n+k,k) = (p(k-1,n)*(n+1)*U0(n+1) + q(k-1,n)*(n+2)*2*U0(n))/(k!*9^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A073399(k,m).

Examples

			k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,33; 45,396,831; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
		

Crossrefs

Formula

Recursion for row polynomials defined in the comments: see A073401.

A073378 Eighth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 9, 63, 345, 1665, 7227, 29073, 109791, 394020, 1354210, 4486482, 14397318, 44932446, 136817370, 407566350, 1190446866, 3415935699, 9645169743, 26836557825, 73670997015, 199751003991, 535449185469
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Comments

For a(n) in terms of U(n+1) and U(n) with U(n) = A001045(n+1) see A073370 and the row polynomials of triangles A073399 and A073400.

Crossrefs

Ninth (m=8) column of triangle A073370.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^9 )); // G. C. Greubel, Oct 01 2022
    
  • Mathematica
    CoefficientList[Series[1/((1+x)*(1-2*x))^9, {x,0,40}], x] (* G. C. Greubel, Oct 01 2022 *)
  • SageMath
    def A073378_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1/((1+x)*(1-2*x))^9 ).list()
    A073378_list(40) # G. C. Greubel, Oct 01 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073377(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+8, 8) * binomial(n-k, k) * 2^k.
G.f.: 1/(1-(1+2*x)*x)^9 = 1/((1+x)*(1-2*x))^9.
Showing 1-4 of 4 results.