A073400
Coefficient triangle of polynomials (falling powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073399.
Original entry on oeis.org
2, 9, 33, 45, 396, 831, 243, 3744, 18297, 28236, 1377, 32481, 273483, 968679, 1210140, 8019, 268029, 3418767, 20681811, 58920534, 62686440, 47385, 2130138, 38186478, 347584284, 1683064737, 4075425738, 3810867480
Offset: 0
k=2: U2(n)=((9*n+30)*(n+1)*U0(n+1)+(9*n+33)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 9,33; 45,396,831; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073370
Convolution triangle of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 5, 7, 3, 1, 11, 16, 12, 4, 1, 21, 41, 34, 18, 5, 1, 43, 94, 99, 60, 25, 6, 1, 85, 219, 261, 195, 95, 33, 7, 1, 171, 492, 678, 576, 340, 140, 42, 8, 1, 341, 1101, 1692, 1644, 1106, 546, 196, 52, 9, 1
Offset: 0
Triangle begins as:
1;
1, 1;
3, 2, 1;
5, 7, 3, 1;
11, 16, 12, 4, 1;
21, 41, 34, 18, 5, 1;
43, 94, 99, 60, 25, 6, 1;
85, 219, 261, 195, 95, 33, 7, 1;
171, 492, 678, 576, 340, 140, 42, 8, 1;
The triangle (0, 1, 2, -2, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 3, 2, 1;
0, 5, 7, 3, 1;
0, 11, 16, 12, 4, 1;
0, 21, 41, 34, 18, 5, 1; - _Philippe Deléham_, Feb 19 2013
-
A073370:= func< n,k | (&+[Binomial(n-j,k)*Binomial(n-k-j,j)*2^j: j in [0..Floor((n-k)/2)]]) >;
[A073370(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 01 2022
-
# Uses function PMatrix from A357368. Adds a row above and a column to the left.
PMatrix(10, n -> (2^n - (-1)^n) / 3); # Peter Luschny, Oct 07 2022
-
T[n_, k_]:= T[n, k]= Sum[Binomial[n-j,k]*Binomial[n-k-j,j]*2^j, {j,0,Floor[(n- k)/2]}];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 01 2022 *)
-
def A073370(n,k): return binomial(n,k)*sum( 2^j * binomial(2*j,j) * binomial(n-k,2*j)/binomial(n,j) for j in range(1+(n-k)//2))
flatten([[A073370(n,k) for k in range(n+1)] for n in range(12)]) # G. C. Greubel, Oct 01 2022
A073401
Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073402.
Original entry on oeis.org
1, 30, 9, 1050, 531, 63, 44520, 29610, 6165, 405, 2245320, 1789614, 502821, 59454, 2511, 131891760, 120133692, 41182344, 6686631, 517104, 15309, 8862693840, 8966770308, 3559509360, 714174327, 76790673, 4214349, 92583
Offset: 0
k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 30,9; 1050,531,63; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073378
Eighth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 9, 63, 345, 1665, 7227, 29073, 109791, 394020, 1354210, 4486482, 14397318, 44932446, 136817370, 407566350, 1190446866, 3415935699, 9645169743, 26836557825, 73670997015, 199751003991, 535449185469
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (9,-18,-60,234,126,-1176,36,3519,-479,-7038,144, 9408,2016,-7488,-3840,2304,2304,512).
Ninth (m=8) column of triangle
A073370.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^9 )); // G. C. Greubel, Oct 01 2022
-
CoefficientList[Series[1/((1+x)*(1-2*x))^9, {x,0,40}], x] (* G. C. Greubel, Oct 01 2022 *)
-
def A073378_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x)*(1-2*x))^9 ).list()
A073378_list(40) # G. C. Greubel, Oct 01 2022
A073402
Coefficient triangle of polynomials (rising powers) related to convolutions of A001045(n+1), n >= 0, (generalized (1,2)-Fibonacci). Companion triangle is A073401.
Original entry on oeis.org
2, 33, 9, 831, 396, 45, 28236, 18297, 3744, 243, 1210140, 968679, 273483, 32481, 1377, 62686440, 58920534, 20681811, 3418767, 268029, 8019, 3810867480, 4075425738, 1683064737, 347584284, 38186478, 2130138, 47385
Offset: 0
k=2: U2(n)=((30+9*n)*(n+1)*U0(n+1)+(33+9*n)*(n+2)*2*U0(n))/(2*9^2), cf. A073372.
1; 33,9; 831,396,45; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
A073379
Ninth convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
Original entry on oeis.org
1, 10, 75, 440, 2255, 10362, 43945, 174460, 656370, 2359500, 8158722, 27275040, 88524930, 279892380, 864508590, 2614740216, 7759693095, 22634343270, 64990287285, 183929970840, 513661549401, 1416970676550
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (10,-25,-60,330,12,-1770,960,5835,-4070,-13597, 8140,23340,-7680,-28320,-384,21120,7680,-6400,-5120,-1024).
Tenth (m=9) column of triangle
A073370.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1-2*x))^10 )); // G. C. Greubel, Oct 01 2022
-
CoefficientList[Series[1/((1+x)*(1-2*x))^10, {x,0,40}], x] (* G. C. Greubel, Oct 01 2022 *)
-
def A073379_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( 1/((1+x)*(1-2*x))^10 ).list()
A073379_list(40) # G. C. Greubel, Oct 01 2022
Showing 1-6 of 6 results.
Comments