A274320 Least inverse of A073454: Smallest m such that m divided by the primes up to m have exactly n repeated residues.
6, 15, 35, 95, 187, 259, 671, 903, 905, 1273, 1967, 2938, 3161, 4382, 6004, 6005, 9718, 11049, 12371, 14194, 16181, 17285, 20842, 27242, 27257, 31937, 35758, 35767, 50407, 54071, 56345, 59917, 59923, 75898, 86833, 86839, 106999, 116651, 116653, 134027, 134034, 134041, 156138, 171613, 173499, 188170, 194554, 194555, 228122, 253291, 253327, 260374, 302371, 302395, 302396, 346837, 368983, 376262, 376267, 376268, 376270
Offset: 1
Keywords
Examples
The primes up to 15 are (2, 3, 5, 7, 11, 13) and 15 mod each of these primes leaves residues of (1, 0, 0, 1, 4, 2). There are two duplicates (1 appears twice and so does 0) and no smaller number has this property, so a(2) = 15.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..134
Programs
-
PARI
a(n)=my(P=List(),m=1); while(#P-#Set(apply(p->m%p, P)) != n, if(isprime(m++), listput(P,m))); m
Comments