A073504 A possible basis for finite fractal sequences: let u(1) = 1, u(2) = n, u(k) = floor(u(k-1)/2) + floor(u(k-2)/2); then a(n) = lim_{k->infinity} u(k).
0, 0, 0, 2, 2, 2, 2, 4, 4, 4, 4, 6, 6, 8, 8, 10, 10, 10, 10, 12, 12, 12, 12, 14, 14, 14, 14, 16, 16, 18, 18, 20, 20, 20, 20, 22, 22, 22, 22, 24, 24, 24, 24, 26, 26, 28, 28, 30, 30, 30, 30, 32, 32, 34, 34, 36, 36, 36, 36, 38, 38, 40, 40, 42, 42, 42, 42, 44, 44, 44, 44, 46, 46, 46
Offset: 1
Keywords
Links
- Benoit Cloitre, Graph of Fr(n,4) for 1 <= n <= B(4).
- Benoit Cloitre, Graph of Fr(n,6) for 1 <= n <= B(6).
- Benoit Cloitre, Graph of Fr(n,8) for 1 <= n <= B(8).
- Benoit Cloitre, Graph of Fr(n,5) for 1 <= n <= B(5).
- Benoit Cloitre, Graph of Fr(n,7) for 1 <= n <= B(7).
- Benoit Cloitre, Graph of Fr(n,9) for 1 <= n <= B(9).
Crossrefs
Programs
-
PARI
for(n=1, taille, u1=1; u2=n; while((u2!=u1)||((u2%2) == 1), u3=u2; u2=floor(u2/2)+floor(u1/2); u1=u3; ); b[n]=u2; ) fr(m, k)=(3*sum(i=1, k, b[i]))-k^2+m*k; bound(m)=if((m%2) == 1, p=(m-1)/2; 5/3*(4^p-1), 2/3*(4^(m/2)-1)); m=5; fractal=vector(bound(m)); for(i=1, bound(m), fractal[i]=fr(m, i); ); Mm=vecmax(fractal) indices=vector(bound(m)); for(i=1, bound(m), indices[i]=i); myStr=plothrawexport("svg",indices,fractal,1);write("myPlot.svg",myStr); \\ To generate graphs
Formula
a(n) is asymptotic to 2*n/3.
Comments