cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A073554 Number of Fibonacci numbers F(k), k <= 10^n, which end in 7.

Original entry on oeis.org

0, 14, 134, 1334, 13334, 133334, 1333334, 13333334, 133333334, 1333333334, 13333333334, 133333333334, 1333333333334, 13333333333334, 133333333333334, 1333333333333334, 13333333333333334, 133333333333333334, 1333333333333333334, 13333333333333333334, 133333333333333333334, 1333333333333333333334, 13333333333333333333334
Offset: 1

Views

Author

Shyam Sunder Gupta, Aug 15 2002

Keywords

Examples

			a(2) = 14 because there are 14 Fibonacci numbers up to 10^2 which end in 7.
		

Crossrefs

Cf. A073548 (end in 2), A073549 (6), A073550 (1), A073551 (3), (A073552 (4)), A073553 (5), this sequence (7), A073555 (8), A073556 (9).

Programs

  • Mathematica
    Join[{0},Table[10 FromDigits[PadRight[{1},n,3]]+4,{n,30}]] (* Harvey P. Dale, Mar 29 2023 *)

Formula

If n>1 then a(n) = (2*10^n + 10)/15. - Robert Gerbicz, Sep 06 2002
a(n) = A073550(n) for n >= 3. - Georg Fischer, Oct 13 2022
From Elmo R. Oliveira, Jul 22 2025: (Start)
G.f.: 2*x^2*(7 - 10*x)/((1-x)*(1-10*x)).
E.g.f.: 2*(-6 - 15*x + 5*exp(x) + exp(10*x))/15.
a(n) = 2*A067275(n) for n >= 2.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 3. (End)

Extensions

More terms from Robert Gerbicz, Sep 06 2002
Showing 1-1 of 1 results.