cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073592 Euler transform of negative integers.

Original entry on oeis.org

1, -1, -2, -1, 0, 4, 4, 7, 3, -2, -9, -17, -25, -24, -13, -1, 32, 61, 97, 111, 112, 74, 8, -108, -243, -392, -512, -569, -542, -358, -33, 473, 1078, 1788, 2395, 2865, 2955, 2569, 1496, -245, -2751, -5783, -9121, -12299, -14739, -15806, -14719, -10930, -3813, 6593, 20284, 36139, 53081, 68620, 80539
Offset: 0

Views

Author

Vladeta Jovovic, Aug 28 2002

Keywords

Comments

1/A(x) is g.f. for A000219.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(
          numtheory[sigma][2](j)*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Mar 12 2015
  • Mathematica
    nmax=50; CoefficientList[Series[Exp[Sum[-x^k/(k*(1-x^k)^2),{k,1,nmax}]],{x,0,nmax}],x] (* Vaclav Kotesovec, Mar 02 2015 *)
    a[n_]:= a[n] = -1/n*Sum[DivisorSigma[2,k]*a[n-k],{k,1,n}]; a[0]=1; Table[a[n],{n,0,100}] (* Vaclav Kotesovec, Mar 02 2015 *)
  • SageMath
    # uses[EulerTransform from A166861]
    b = EulerTransform(lambda n: -n)
    print([b(n) for n in range(55)]) # Peter Luschny, Nov 11 2020

Formula

G.f.: Product_{k>0} (1-x^k)^k.
a(n) = -1/n*Sum_{k=1..n} sigma[2](k)*a(n-k).
G.f.: exp( Sum_{n>=1} -sigma_2(n)*x^n/n ). - Seiichi Manyama, Mar 04 2017